Join the growing community of curious minds on IDNLearn.com. Whether your question is simple or complex, our community is here to provide detailed and trustworthy answers quickly and effectively.

Evaluate the following limit. Use l'Hôpital's Rule when it is convenient and applicable.

[tex]\[ \lim _{x \rightarrow -2^{+}}\left(\frac{1}{x+2} - \frac{1}{\sqrt{x+2}}\right) \][/tex]

A. Manipulate the given expression algebraically to rewrite the limit as [tex]\(\lim _{x \rightarrow -2^{+}} (\square)\)[/tex].

B. Use l'Hôpital's Rule directly to rewrite the limit as [tex]\(\lim _{x \rightarrow -2^{+}}^{(m)}\)[/tex].

C. The limit can be evaluated by direct substitution.

D. Take the natural logarithm of the expression and then use l'Hôpital's Rule to rewrite the limit as [tex]\(\lim _{x \rightarrow -2^{+}}\)[/tex].


Sagot :

To evaluate the limit
[tex]\[ \lim_{x \to -2^+} \left( \frac{1}{x+2} - \frac{1}{\sqrt{x+2}} \right), \][/tex]
we need to analyze the behavior of each term separately and see if we can simplify the expression.

First, let's identify the forms of the terms as [tex]\( x \)[/tex] approaches [tex]\(-2\)[/tex] from the right ([tex]\(x \rightarrow -2^+\)[/tex]):

1. [tex]\( \frac{1}{x+2} \)[/tex] becomes very large because [tex]\( x+2 \)[/tex] approaches [tex]\( 0^+ \)[/tex], making the term [tex]\( \frac{1}{x+2} \)[/tex] tend to [tex]\( +\infty \)[/tex].
2. [tex]\( \frac{1}{\sqrt{x+2}} \)[/tex] similarly becomes very large because [tex]\( \sqrt{x+2} \)[/tex] also approaches [tex]\( 0^+ \)[/tex], making the term [tex]\( \frac{1}{\sqrt{x+2}} \)[/tex] tend to [tex]\( +\infty \)[/tex].

Given that direct substitution leads to the indeterminate form [tex]\( \infty - \infty \)[/tex], we need to manipulate the expression to apply l'Hôpital's Rule.

Let's rewrite the expression inside the limit by finding a common denominator:
[tex]\[ \frac{1}{x+2} - \frac{1}{\sqrt{x+2}} = \frac{\sqrt{x+2} - (x+2)}{(x+2)\sqrt{x+2}}. \][/tex]

Now, simplify the numerator:
[tex]\[ \sqrt{x+2} - (x+2). \][/tex]

We have:
[tex]\[ \lim_{x \to -2^+} \frac{\sqrt{x+2} - (x+2)}{(x+2)\sqrt{x+2}}. \][/tex]

To handle this limit, let's use l'Hôpital's Rule, which requires taking derivatives of the numerator and denominator since the limit is still of the form [tex]\(\frac{0}{0}\)[/tex] as [tex]\( x \to -2^+ \)[/tex].

Calculate the derivative of the numerator and the denominator:
1. The derivative of the numerator:
[tex]\[ \frac{d}{dx} [\sqrt{x+2} - (x+2)] = \frac{1}{2\sqrt{x+2}} - 1. \][/tex]

2. The derivative of the denominator:
[tex]\[ \frac{d}{dx} [(x+2)\sqrt{x+2}] = \frac{d}{dx} [(x+2)^{3/2}] = \frac{3}{2} (x+2)^{1/2}. \][/tex]

Therefore, applying l'Hôpital's Rule, the limit becomes:
[tex]\[ \lim_{x \to -2^+} \frac{\frac{1}{2\sqrt{x+2}} - 1}{\frac{3}{2} \sqrt{x+2}}. \][/tex]

Simplify the fraction:
[tex]\[ = \lim_{x \to -2^+} \frac{1 - 2\sqrt{x+2}}{3(x+2)}. \][/tex]

As [tex]\( x \to -2^+ \)[/tex], the term [tex]\( 2\sqrt{x+2} \)[/tex] approaches [tex]\( 0 \)[/tex] much faster than [tex]\( 1 \)[/tex], so the fraction simplifies:
[tex]\[ \lim_{x \to -2^+} \frac{1 - 2\sqrt{x+2}}{3(x+2)} = \lim_{x \to -2^+} \frac{1 - 0}{3(x+2)} = \lim_{x \to -2^+} \frac{1}{3(x+2)}. \][/tex]

Since [tex]\(3(x + 2)\)[/tex] approaches 0 from the positive side:
[tex]\[ = \frac{1}{3} \times \infty = \infty. \][/tex]

So, the given limit evaluates to [tex]\( \infty \)[/tex].