Get the information you need with the help of IDNLearn.com's extensive Q&A platform. Discover comprehensive answers to your questions from our community of knowledgeable experts.
Sagot :
To find an explicit description of the null space [tex]\( \text{Nul } A \)[/tex] for the matrix [tex]\( A \)[/tex], we can follow these steps:
Given the matrix:
[tex]\[ A = \begin{pmatrix} 1 & 3 & -4 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \][/tex]
We need to find all vectors [tex]\( \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \)[/tex] such that [tex]\( A \vec{x} = \vec{0} \)[/tex]. This translates to solving the equation [tex]\( A \vec{x} = \vec{0} \)[/tex].
Expressing the system in terms of equations, we have:
[tex]\[ \begin{cases} 1x_1 + 3x_2 - 4x_3 + 0x_4 = 0 \\ 0x_1 + 0x_2 + 1x_3 + 0x_4 = 0 \end{cases} \][/tex]
From the second equation, we immediately get:
[tex]\[ x_3 = 0 \][/tex]
Substituting [tex]\( x_3 = 0 \)[/tex] into the first equation, we obtain:
[tex]\[ x_1 + 3x_2 = 0 \][/tex]
Solving for [tex]\( x_1 \)[/tex] in terms of [tex]\( x_2 \)[/tex], we get:
[tex]\[ x_1 = -3x_2 \][/tex]
Thus, the vector [tex]\( \vec{x} \)[/tex] can be written as:
[tex]\[ \vec{x} = \begin{pmatrix} -3x_2 \\ x_2 \\ 0 \\ 0 \end{pmatrix} = x_2 \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix} \][/tex]
Next, we consider [tex]\( x_4 \)[/tex] which is free, meaning it can take any value. So we can also write:
[tex]\[ \vec{x} = x_4 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \][/tex]
Combining these observations, the null space [tex]\( \text{Nul } A \)[/tex] is spanned by the vectors:
[tex]\[ \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \][/tex]
Therefore, the vectors that span the null space [tex]\( \text{Nul } A \)[/tex] are:
[tex]\[ \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \][/tex]
So, a spanning set for [tex]\( \text{Nul } A \)[/tex] is:
[tex]\[ \boxed{\begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}} \][/tex]
Given the matrix:
[tex]\[ A = \begin{pmatrix} 1 & 3 & -4 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \][/tex]
We need to find all vectors [tex]\( \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \)[/tex] such that [tex]\( A \vec{x} = \vec{0} \)[/tex]. This translates to solving the equation [tex]\( A \vec{x} = \vec{0} \)[/tex].
Expressing the system in terms of equations, we have:
[tex]\[ \begin{cases} 1x_1 + 3x_2 - 4x_3 + 0x_4 = 0 \\ 0x_1 + 0x_2 + 1x_3 + 0x_4 = 0 \end{cases} \][/tex]
From the second equation, we immediately get:
[tex]\[ x_3 = 0 \][/tex]
Substituting [tex]\( x_3 = 0 \)[/tex] into the first equation, we obtain:
[tex]\[ x_1 + 3x_2 = 0 \][/tex]
Solving for [tex]\( x_1 \)[/tex] in terms of [tex]\( x_2 \)[/tex], we get:
[tex]\[ x_1 = -3x_2 \][/tex]
Thus, the vector [tex]\( \vec{x} \)[/tex] can be written as:
[tex]\[ \vec{x} = \begin{pmatrix} -3x_2 \\ x_2 \\ 0 \\ 0 \end{pmatrix} = x_2 \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix} \][/tex]
Next, we consider [tex]\( x_4 \)[/tex] which is free, meaning it can take any value. So we can also write:
[tex]\[ \vec{x} = x_4 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \][/tex]
Combining these observations, the null space [tex]\( \text{Nul } A \)[/tex] is spanned by the vectors:
[tex]\[ \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \][/tex]
Therefore, the vectors that span the null space [tex]\( \text{Nul } A \)[/tex] are:
[tex]\[ \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \][/tex]
So, a spanning set for [tex]\( \text{Nul } A \)[/tex] is:
[tex]\[ \boxed{\begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}} \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.