Find detailed and accurate answers to your questions on IDNLearn.com. Find reliable solutions to your questions quickly and easily with help from our experienced experts.
Sagot :
Certainly! Let's solve the problem step-by-step.
### Step-by-Step Solution
1. Understand the De Broglie Wavelength Formula:
The de Broglie wavelength ([tex]\(\lambda\)[/tex]) can be calculated using the formula:
[tex]\[ \lambda = \frac{h}{mv} \][/tex]
where:
- [tex]\(h\)[/tex] is Planck's constant ([tex]\(6.63 \times 10^{-34} \, J \cdot s\)[/tex])
- [tex]\(m\)[/tex] is the mass of the object (in kg)
- [tex]\(v\)[/tex] is the velocity of the object (in m/s)
2. Given Data:
- Mass ([tex]\(m\)[/tex]) = 0.030 kg
- Velocity ([tex]\(v\)[/tex]) = 540 m/s
- Planck's Constant ([tex]\(h\)[/tex]) = [tex]\(6.63 \times 10^{-34} \, J \cdot s\)[/tex]
3. Substitute the Values into the Formula:
[tex]\[ \lambda = \frac{6.63 \times 10^{-34}}{0.030 \times 540} \][/tex]
4. Perform the Calculation:
First, calculate the denominator:
[tex]\[ 0.030 \times 540 = 16.2 \][/tex]
Then divide Planck's constant by this product:
[tex]\[ \lambda = \frac{6.63 \times 10^{-34}}{16.2} \approx 4.092592592592593 \times 10^{-35} \, \text{m} \][/tex]
5. Round to Significant Figures:
The answer [tex]\(4.092592592592593 \times 10^{-35} \, \text{m}\)[/tex] can be rounded to match the significant figures typically provided in such contexts. Hence, it is approximately [tex]\(4.1 \times 10^{-35} \, \text{m}\)[/tex].
### Conclusion
Hence, the de Broglie wavelength of the bullet of mass 0.030 kg traveling at [tex]\(540 \, \text{m/s}\)[/tex] is approximately [tex]\(4.1 \times 10^{-35} \, \text{m}\)[/tex].
The correct answer from the given options is:
[tex]\[ \boxed{4.1 \times 10^{-35} \, \text{m}} \][/tex]
### Step-by-Step Solution
1. Understand the De Broglie Wavelength Formula:
The de Broglie wavelength ([tex]\(\lambda\)[/tex]) can be calculated using the formula:
[tex]\[ \lambda = \frac{h}{mv} \][/tex]
where:
- [tex]\(h\)[/tex] is Planck's constant ([tex]\(6.63 \times 10^{-34} \, J \cdot s\)[/tex])
- [tex]\(m\)[/tex] is the mass of the object (in kg)
- [tex]\(v\)[/tex] is the velocity of the object (in m/s)
2. Given Data:
- Mass ([tex]\(m\)[/tex]) = 0.030 kg
- Velocity ([tex]\(v\)[/tex]) = 540 m/s
- Planck's Constant ([tex]\(h\)[/tex]) = [tex]\(6.63 \times 10^{-34} \, J \cdot s\)[/tex]
3. Substitute the Values into the Formula:
[tex]\[ \lambda = \frac{6.63 \times 10^{-34}}{0.030 \times 540} \][/tex]
4. Perform the Calculation:
First, calculate the denominator:
[tex]\[ 0.030 \times 540 = 16.2 \][/tex]
Then divide Planck's constant by this product:
[tex]\[ \lambda = \frac{6.63 \times 10^{-34}}{16.2} \approx 4.092592592592593 \times 10^{-35} \, \text{m} \][/tex]
5. Round to Significant Figures:
The answer [tex]\(4.092592592592593 \times 10^{-35} \, \text{m}\)[/tex] can be rounded to match the significant figures typically provided in such contexts. Hence, it is approximately [tex]\(4.1 \times 10^{-35} \, \text{m}\)[/tex].
### Conclusion
Hence, the de Broglie wavelength of the bullet of mass 0.030 kg traveling at [tex]\(540 \, \text{m/s}\)[/tex] is approximately [tex]\(4.1 \times 10^{-35} \, \text{m}\)[/tex].
The correct answer from the given options is:
[tex]\[ \boxed{4.1 \times 10^{-35} \, \text{m}} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for visiting IDNLearn.com. For reliable answers to all your questions, please visit us again soon.