Get the answers you've been looking for with the help of IDNLearn.com's expert community. Discover the reliable solutions you need with help from our comprehensive and accurate Q&A platform.
Sagot :
Sure, let's solve the problem step by step.
### Given:
- Skewness ([tex]\( g_1 \)[/tex]): 0.5
- Coefficient of Variation (CV): [tex]\( 40\% \)[/tex]
- Mode ([tex]\( M \)[/tex]): 80
First, let's convert the percentage of the coefficient of variation into a decimal form:
[tex]\[ CV = 40\% = 0.4 \][/tex]
The Pearson coefficient of skewness formula for finding the mean ([tex]\( \mu \)[/tex]) using mode ([tex]\( M \)[/tex]) is given by:
[tex]\[ \text{Skewness} = 3 \times \frac{\mu - M}{\sigma} \][/tex]
where [tex]\( \sigma \)[/tex] is the standard deviation.
Additionally, the coefficient of variation (CV) relates the standard deviation and the mean as follows:
[tex]\[ CV = \frac{\sigma}{\mu} \][/tex]
From the given data:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{\sigma} \][/tex]
[tex]\[ CV = 0.4 = \frac{\sigma}{\mu} \][/tex]
We need to solve for the mean ([tex]\( \mu \)[/tex]). Let's first express [tex]\(\sigma\)[/tex] from the coefficient of variation formula:
[tex]\[ \sigma = 0.4 \mu \][/tex]
Substituting [tex]\(\sigma = 0.4 \mu\)[/tex] into the skewness equation:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{0.4 \mu} \][/tex]
Rewriting this equation:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{0.4 \mu} \][/tex]
[tex]\[ 0.5 = \frac{3 (\mu - 80)}{0.4 \mu} \][/tex]
[tex]\[ 0.5 = \frac{7.5 (\mu - 80)}{\mu} \][/tex]
Multiply both sides of the equation by [tex]\(\mu\)[/tex]:
[tex]\[ 0.5 \mu = 7.5 (\mu - 80) \][/tex]
Distribute and simplify:
[tex]\[ 0.5 \mu = 7.5 \mu - 600 \][/tex]
To isolate [tex]\(\mu\)[/tex], combine like terms by moving all terms involving [tex]\(\mu\)[/tex] to one side of the equation:
[tex]\[ 0.5 \mu - 7.5 \mu = -600 \][/tex]
[tex]\[ -7 \mu = -600 \][/tex]
Divide both sides by -7:
[tex]\[ \mu = \frac{600}{7} \][/tex]
[tex]\[ \mu \approx 85.714 \][/tex]
Thus, the mean ([tex]\( \mu \)[/tex]) of the distribution is approximately [tex]\( 85.714 \)[/tex]. The mode ([tex]\( M \)[/tex]) is given as 80.
### Final answer:
- Mean ([tex]\( \mu \)[/tex]): approximately [tex]\( 85.714 \)[/tex]
- Mode ([tex]\( M \)[/tex]): [tex]\( 80 \)[/tex]
These values satisfy the conditions provided in the problem statement.
### Given:
- Skewness ([tex]\( g_1 \)[/tex]): 0.5
- Coefficient of Variation (CV): [tex]\( 40\% \)[/tex]
- Mode ([tex]\( M \)[/tex]): 80
First, let's convert the percentage of the coefficient of variation into a decimal form:
[tex]\[ CV = 40\% = 0.4 \][/tex]
The Pearson coefficient of skewness formula for finding the mean ([tex]\( \mu \)[/tex]) using mode ([tex]\( M \)[/tex]) is given by:
[tex]\[ \text{Skewness} = 3 \times \frac{\mu - M}{\sigma} \][/tex]
where [tex]\( \sigma \)[/tex] is the standard deviation.
Additionally, the coefficient of variation (CV) relates the standard deviation and the mean as follows:
[tex]\[ CV = \frac{\sigma}{\mu} \][/tex]
From the given data:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{\sigma} \][/tex]
[tex]\[ CV = 0.4 = \frac{\sigma}{\mu} \][/tex]
We need to solve for the mean ([tex]\( \mu \)[/tex]). Let's first express [tex]\(\sigma\)[/tex] from the coefficient of variation formula:
[tex]\[ \sigma = 0.4 \mu \][/tex]
Substituting [tex]\(\sigma = 0.4 \mu\)[/tex] into the skewness equation:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{0.4 \mu} \][/tex]
Rewriting this equation:
[tex]\[ 0.5 = 3 \times \frac{\mu - 80}{0.4 \mu} \][/tex]
[tex]\[ 0.5 = \frac{3 (\mu - 80)}{0.4 \mu} \][/tex]
[tex]\[ 0.5 = \frac{7.5 (\mu - 80)}{\mu} \][/tex]
Multiply both sides of the equation by [tex]\(\mu\)[/tex]:
[tex]\[ 0.5 \mu = 7.5 (\mu - 80) \][/tex]
Distribute and simplify:
[tex]\[ 0.5 \mu = 7.5 \mu - 600 \][/tex]
To isolate [tex]\(\mu\)[/tex], combine like terms by moving all terms involving [tex]\(\mu\)[/tex] to one side of the equation:
[tex]\[ 0.5 \mu - 7.5 \mu = -600 \][/tex]
[tex]\[ -7 \mu = -600 \][/tex]
Divide both sides by -7:
[tex]\[ \mu = \frac{600}{7} \][/tex]
[tex]\[ \mu \approx 85.714 \][/tex]
Thus, the mean ([tex]\( \mu \)[/tex]) of the distribution is approximately [tex]\( 85.714 \)[/tex]. The mode ([tex]\( M \)[/tex]) is given as 80.
### Final answer:
- Mean ([tex]\( \mu \)[/tex]): approximately [tex]\( 85.714 \)[/tex]
- Mode ([tex]\( M \)[/tex]): [tex]\( 80 \)[/tex]
These values satisfy the conditions provided in the problem statement.
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For trustworthy answers, rely on IDNLearn.com. Thanks for visiting, and we look forward to assisting you again.