Discover new knowledge and insights with IDNLearn.com's extensive Q&A database. Discover comprehensive answers to your questions from our community of experienced professionals.
Sagot :
To solve the quadratic equation [tex]\(4x^2 - 3x + 9 = 2x + 1\)[/tex], we will first bring all terms to one side of the equation to set it to zero. This will give us the quadratic equation in the standard form [tex]\(ax^2 + bx + c = 0\)[/tex].
Starting with the original equation:
[tex]\[ 4x^2 - 3x + 9 = 2x + 1 \][/tex]
We subtract [tex]\(2x\)[/tex] and 1 from both sides to get:
[tex]\[ 4x^2 - 3x + 9 - 2x - 1 = 0 \][/tex]
This simplifies to:
[tex]\[ 4x^2 - 5x + 8 = 0 \][/tex]
Now, we have a quadratic equation in the form [tex]\(ax^2 + bx + c = 0\)[/tex], where:
- [tex]\(a = 4\)[/tex]
- [tex]\(b = -5\)[/tex]
- [tex]\(c = 8\)[/tex]
Next, we will use the quadratic formula to find the values of [tex]\(x\)[/tex]. The quadratic formula is given by:
[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]
First, we calculate the discriminant [tex]\(\Delta\)[/tex]:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting in the values for [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ \Delta = (-5)^2 - 4(4)(8) \][/tex]
[tex]\[ \Delta = 25 - 128 \][/tex]
[tex]\[ \Delta = -103 \][/tex]
The discriminant [tex]\(\Delta\)[/tex] is [tex]\(-103\)[/tex], which is negative. This tells us there are no real solutions, but there are two complex solutions. We write the solutions using [tex]\(i\)[/tex], the imaginary unit, where [tex]\(i^2 = -1\)[/tex].
The solutions are:
[tex]\[ x = \frac{{-(-5) \pm \sqrt{{-103}}}}{2 \cdot 4} \][/tex]
[tex]\[ x = \frac{{5 \pm \sqrt{103} \cdot i}}{8} \][/tex]
Thus, the values of [tex]\(x\)[/tex] are:
[tex]\[ x_1 = \frac{5 + \sqrt{103} \cdot i}{8} \][/tex]
[tex]\[ x_2 = \frac{5 - \sqrt{103} \cdot i}{8} \][/tex]
Therefore, the correct answer is:
[tex]\[ \frac{5 \pm \sqrt{103} i}{8} \][/tex]
Starting with the original equation:
[tex]\[ 4x^2 - 3x + 9 = 2x + 1 \][/tex]
We subtract [tex]\(2x\)[/tex] and 1 from both sides to get:
[tex]\[ 4x^2 - 3x + 9 - 2x - 1 = 0 \][/tex]
This simplifies to:
[tex]\[ 4x^2 - 5x + 8 = 0 \][/tex]
Now, we have a quadratic equation in the form [tex]\(ax^2 + bx + c = 0\)[/tex], where:
- [tex]\(a = 4\)[/tex]
- [tex]\(b = -5\)[/tex]
- [tex]\(c = 8\)[/tex]
Next, we will use the quadratic formula to find the values of [tex]\(x\)[/tex]. The quadratic formula is given by:
[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]
First, we calculate the discriminant [tex]\(\Delta\)[/tex]:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting in the values for [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ \Delta = (-5)^2 - 4(4)(8) \][/tex]
[tex]\[ \Delta = 25 - 128 \][/tex]
[tex]\[ \Delta = -103 \][/tex]
The discriminant [tex]\(\Delta\)[/tex] is [tex]\(-103\)[/tex], which is negative. This tells us there are no real solutions, but there are two complex solutions. We write the solutions using [tex]\(i\)[/tex], the imaginary unit, where [tex]\(i^2 = -1\)[/tex].
The solutions are:
[tex]\[ x = \frac{{-(-5) \pm \sqrt{{-103}}}}{2 \cdot 4} \][/tex]
[tex]\[ x = \frac{{5 \pm \sqrt{103} \cdot i}}{8} \][/tex]
Thus, the values of [tex]\(x\)[/tex] are:
[tex]\[ x_1 = \frac{5 + \sqrt{103} \cdot i}{8} \][/tex]
[tex]\[ x_2 = \frac{5 - \sqrt{103} \cdot i}{8} \][/tex]
Therefore, the correct answer is:
[tex]\[ \frac{5 \pm \sqrt{103} i}{8} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. For dependable and accurate answers, visit IDNLearn.com. Thanks for visiting, and see you next time for more helpful information.