Find expert advice and community support for all your questions on IDNLearn.com. Discover in-depth answers to your questions from our community of experienced professionals.
Sagot :
To solve the limit
[tex]\[ \lim_{x \rightarrow \infty}\left(\frac{1^{1/x} + 2^{1/x} + 3^{1/x} + \ldots + n^{1/x}}{n} \right)^{nx}, \][/tex]
we need to understand the behavior of the expression inside the limit as [tex]\(x\)[/tex] approaches infinity.
Consider the expression inside the limit,
[tex]\[ \frac{1^{1/x} + 2^{1/x} + 3^{1/x} + \ldots + n^{1/x}}{n}. \][/tex]
For large values of [tex]\(x\)[/tex], [tex]\(i^{1/x}\)[/tex] approaches 1 for any [tex]\(i\)[/tex] because raising any positive number to the power of [tex]\(0\)[/tex] (since [tex]\(\frac{1}{x} \to 0\)[/tex] as [tex]\(x \to \infty\)[/tex]) approaches 1. Specifically,
[tex]\[ \lim_{x \to \infty} i^{1/x} = 1. \][/tex]
This suggests that each term [tex]\(i^{1/x}\)[/tex] in the sum approaches 1 as [tex]\(x\)[/tex] goes to infinity. Consequently, the average of these [tex]\(n\)[/tex] terms also approaches 1:
[tex]\[ \lim_{x \to \infty} \frac{1^{1/x} + 2^{1/x} + \ldots + n^{1/x}}{n} = \frac{1 + 1 + \ldots + 1 (n \text{ times})}{n} = 1. \][/tex]
Now consider the entire expression:
[tex]\[ \left( \frac{1^{1/x} + 2^{1/x} + \ldots + n^{1/x}}{n} \right)^{nx}. \][/tex]
Since the inner fraction approaches 1 as [tex]\(x \to \infty\)[/tex], we examine the behavior of [tex]\(1^{nx}\)[/tex]:
[tex]\[ \left(1\right)^{nx} = 1. \][/tex]
So intuitively, this expression is:
[tex]\[ \left( 1 \right)^{nx}. \][/tex]
As [tex]\(1^y = 1\)[/tex] for any real [tex]\(y\)[/tex], it follows that
[tex]\[ \lim_{x \rightarrow \infty}\left(\frac{1^{1/x} + 2^{1/x} + 3^{1/x} + \ldots + n^{1/x}}{n} \right)^{nx} = 1. \][/tex]
Therefore, the limit is:
[tex]\[ \boxed{1}. \][/tex]
[tex]\[ \lim_{x \rightarrow \infty}\left(\frac{1^{1/x} + 2^{1/x} + 3^{1/x} + \ldots + n^{1/x}}{n} \right)^{nx}, \][/tex]
we need to understand the behavior of the expression inside the limit as [tex]\(x\)[/tex] approaches infinity.
Consider the expression inside the limit,
[tex]\[ \frac{1^{1/x} + 2^{1/x} + 3^{1/x} + \ldots + n^{1/x}}{n}. \][/tex]
For large values of [tex]\(x\)[/tex], [tex]\(i^{1/x}\)[/tex] approaches 1 for any [tex]\(i\)[/tex] because raising any positive number to the power of [tex]\(0\)[/tex] (since [tex]\(\frac{1}{x} \to 0\)[/tex] as [tex]\(x \to \infty\)[/tex]) approaches 1. Specifically,
[tex]\[ \lim_{x \to \infty} i^{1/x} = 1. \][/tex]
This suggests that each term [tex]\(i^{1/x}\)[/tex] in the sum approaches 1 as [tex]\(x\)[/tex] goes to infinity. Consequently, the average of these [tex]\(n\)[/tex] terms also approaches 1:
[tex]\[ \lim_{x \to \infty} \frac{1^{1/x} + 2^{1/x} + \ldots + n^{1/x}}{n} = \frac{1 + 1 + \ldots + 1 (n \text{ times})}{n} = 1. \][/tex]
Now consider the entire expression:
[tex]\[ \left( \frac{1^{1/x} + 2^{1/x} + \ldots + n^{1/x}}{n} \right)^{nx}. \][/tex]
Since the inner fraction approaches 1 as [tex]\(x \to \infty\)[/tex], we examine the behavior of [tex]\(1^{nx}\)[/tex]:
[tex]\[ \left(1\right)^{nx} = 1. \][/tex]
So intuitively, this expression is:
[tex]\[ \left( 1 \right)^{nx}. \][/tex]
As [tex]\(1^y = 1\)[/tex] for any real [tex]\(y\)[/tex], it follows that
[tex]\[ \lim_{x \rightarrow \infty}\left(\frac{1^{1/x} + 2^{1/x} + 3^{1/x} + \ldots + n^{1/x}}{n} \right)^{nx} = 1. \][/tex]
Therefore, the limit is:
[tex]\[ \boxed{1}. \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.