Find answers to your questions faster and easier with IDNLearn.com. Our experts provide prompt and accurate answers to help you make informed decisions on any topic.

What is the pressure of 0.540 mol of an ideal gas at 35.5 L and 223 K?

Use [tex] PV = nRT [/tex] and [tex] R = 8.314 \frac{ L \cdot kPa }{ mol \cdot K } [/tex].

A. 0.715 kPa
B. 2.45 kPa
C. 28.2 kPa
D. 62.7 kPa


Sagot :

Certainly! Let's solve this problem step-by-step using the ideal gas law equation:

The ideal gas law is given by:
[tex]\[ P V = n R T \][/tex]
where:
- [tex]\( P \)[/tex] is the pressure of the gas.
- [tex]\( V \)[/tex] is the volume of the gas.
- [tex]\( n \)[/tex] is the number of moles of the gas.
- [tex]\( R \)[/tex] is the ideal gas constant.
- [tex]\( T \)[/tex] is the temperature of the gas in Kelvin.

Here are the given values:
- [tex]\( n = 0.540 \)[/tex] moles
- [tex]\( V = 35.5 \)[/tex] liters
- [tex]\( T = 223 \)[/tex] K
- The ideal gas constant, [tex]\( R = 8.314 \frac{L \cdot kPa}{mol \cdot K} \)[/tex]

We need to find the pressure [tex]\( P \)[/tex].

Rearrange the ideal gas law equation to solve for [tex]\( P \)[/tex]:
[tex]\[ P = \frac{n R T}{V} \][/tex]

Substitute the given values into the equation:
[tex]\[ P = \frac{0.540 \times 8.314 \times 223}{35.5} \][/tex]

Calculate the numerator:
[tex]\[ 0.540 \times 8.314 \times 223 = 1003.24892 \][/tex]

Calculate the pressure [tex]\( P \)[/tex]:
[tex]\[ P = \frac{1003.24892}{35.5} \approx 28.202024788732395 \, kPa \][/tex]

Rounded to one decimal place, the pressure is:
[tex]\[ P \approx 28.2 \, kPa \][/tex]

Thus, the pressure of the gas is:
[tex]\[ \boxed{28.2 \, kPa} \][/tex]