Get the answers you've been looking for with the help of IDNLearn.com's expert community. Join our knowledgeable community and get detailed, reliable answers to all your questions.

Calculate the bond length of an HCl molecule if its moment of inertia is [tex]$2.7 \times 10^{-40} \text{ g cm}^2$[/tex] and reduced mass is [tex]$0.98 \text{ g mol}^{-1}$[/tex].

Sagot :

To determine the bond length of an HCl molecule given the moment of inertia (I) and the reduced mass (μ), we follow these steps:

1. Given Information:
- Moment of inertia [tex]\( I = 2.7 \times 10^{-40} \, g \cdot cm^2 \)[/tex]
- Reduced mass [tex]\( \mu = 0.98 \, g \cdot mol^{-1} \)[/tex]

2. Convert the reduced mass from grams per mole to grams per molecule:
- We know that 1 mole of a substance contains Avogadro's number [tex]\((N_A)\)[/tex] of molecules, where [tex]\( N_A = 6.022 \times 10^{23} \)[/tex] molecules per mole.
- Therefore, the reduced mass per molecule is calculated as:
[tex]\[ \mu_{molecule} = \frac{\mu}{N_A} \][/tex]
[tex]\[ \mu_{molecule} = \frac{0.98 \, g \cdot mol^{-1}}{6.022 \times 10^{23} \, molecules \cdot mol^{-1}} \][/tex]

3. Calculate the reduced mass per molecule:
[tex]\[ \mu_{molecule} = \frac{0.98}{6.022 \times 10^{23}} \, g \][/tex]

4. Determine the bond length [tex]\( r \)[/tex] using the relationship between the moment of inertia and the reduced mass:
- The moment of inertia of a diatomic molecule is given by:
[tex]\[ I = \mu_{molecule} \cdot r^2 \][/tex]
- To find the bond length [tex]\( r \)[/tex], we rearrange this formula:
[tex]\[ r = \sqrt{\frac{I}{\mu_{molecule}}} \][/tex]

5. Substitute the known values into the formula:
[tex]\[ r = \sqrt{\frac{2.7 \times 10^{-40} \, g \cdot cm^2}{\frac{0.98}{6.022 \times 10^{23}} \, g}} \][/tex]

6. Simplify the expression under the square root:
[tex]\[ r = \sqrt{\frac{2.7 \times 10^{-40} \times 6.022 \times 10^{23}}{0.98}} \, cm \][/tex]

7. Calculate the numerical value:
[tex]\[ r \approx 1.2880692718093976 \times 10^{-8} \, cm \][/tex]

Thus, the bond length of the HCl molecule is approximately [tex]\( 1.2880692718093976 \times 10^{-8} \)[/tex] cm.