Get expert insights and reliable answers to your questions on IDNLearn.com. Join our interactive community and get comprehensive, reliable answers to all your questions.
Sagot :
Sure, let's break down the solution to find the perimeter and area of the polygon with vertices [tex]\( W(-4,28) \)[/tex], [tex]\( X(8,23) \)[/tex], [tex]\( Y(-13,16) \)[/tex], and [tex]\( Z(-4,11) \)[/tex].
Part A. Perimeter:
To find the perimeter of the polygon, we need to calculate the distances between each pair of consecutive vertices and then sum them up.
1. Calculate distance [tex]\( W \)[/tex] to [tex]\( X \)[/tex]:
[tex]\[ \text{Distance} = \sqrt{(X_x - W_x)^2 + (X_y - W_y)^2} \][/tex]
[tex]\( W(-4, 28) \)[/tex] and [tex]\( X(8, 23) \)[/tex]:
[tex]\[ = \sqrt{(8 - (-4))^2 + (23 - 28)^2} = \sqrt{(12)^2 + (-5)^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \][/tex]
2. Calculate distance [tex]\( X \)[/tex] to [tex]\( Y \)[/tex]:
[tex]\[ \text{Distance} = \sqrt{(Y_x - X_x)^2 + (Y_y - X_y)^2} \][/tex]
[tex]\( X(8, 23) \)[/tex] and [tex]\( Y(-13, 16) \)[/tex]:
[tex]\[ = \sqrt{(-13 - 8)^2 + (16 - 23)^2} = \sqrt{(-21)^2 + (-7)^2} = \sqrt{441 + 49} = \sqrt{490} \approx 22.1 \][/tex]
3. Calculate distance [tex]\( Y \)[/tex] to [tex]\( Z \)[/tex]:
[tex]\[ \text{Distance} = \sqrt{(Z_x - Y_x)^2 + (Z_y - Y_y)^2} \][/tex]
[tex]\( Y(-13, 16) \)[/tex] and [tex]\( Z(-4, 11) \)[/tex]:
[tex]\[ = \sqrt{(-4 - (-13))^2 + (11 - 16)^2} = \sqrt{(9)^2 + (-5)^2} = \sqrt{81 + 25} = \sqrt{106} \approx 10.3 \][/tex]
4. Calculate distance [tex]\( Z \)[/tex] to [tex]\( W \)[/tex]:
[tex]\[ \text{Distance} = \sqrt{(W_x - Z_x)^2 + (W_y - Z_y)^2} \][/tex]
[tex]\( Z(-4, 11) \)[/tex] and [tex]\( W(-4, 28) \)[/tex]:
[tex]\[ = \sqrt{(-4 - (-4))^2 + (28 - 11)^2} = \sqrt{(0)^2 + (17)^2} = \sqrt{17^2} = 17 \][/tex]
Now, sum up the distances to get the perimeter:
[tex]\[ \text{Perimeter} = 13 + 22.1 + 10.3 + 17 \approx 62.4 \text{ units} \][/tex]
Part B. Area:
To find the area of the polygon, we can use the Shoelace formula (or Gauss's area formula), which is given by:
[tex]\[ \text{Area} = \frac{1}{2} \left| \sum_{i=1}^{n-1} (x_i y_{i+1} - y_i x_{i+1}) + (x_n y_1 - y_n x_1) \right| \][/tex]
For vertices [tex]\( W(-4,28) \)[/tex], [tex]\( X(8,23) \)[/tex], [tex]\( Y(-13,16) \)[/tex], and [tex]\( Z(-4,11) \)[/tex]:
[tex]\[ \begin{aligned} \text{Area} &= \frac{1}{2} \left| (-4 \cdot 23 + 8 \cdot 16 + (-13) \cdot 11 + (-4) \cdot 28) - (28 \cdot 8 + 23 \cdot (-13) + 16 \cdot (-4) + 11 \cdot (-4)) \right| \\ &= \frac{1}{2} \left| ( -92 + 128 - 143 - 112) - ( 224 - 299 - 64 - 44) \right| \\ &= \frac{1}{2} \left| -219 -115 \right| \\ &= \frac{1}{2} \left| -104 \right|\\ &= 52 \end{aligned} \][/tex]
Thus, the area is:
[tex]\[ \text{Area} = 52 \text{ square units} \][/tex]
So, the answers are:
[tex]\[ \begin{aligned} \text{Part A: Perimeter} &= 62.4 \text{ units} \\ \text{Part B: Area} &= 52 \text{ square units} \end{aligned} \][/tex]
Part A. Perimeter:
To find the perimeter of the polygon, we need to calculate the distances between each pair of consecutive vertices and then sum them up.
1. Calculate distance [tex]\( W \)[/tex] to [tex]\( X \)[/tex]:
[tex]\[ \text{Distance} = \sqrt{(X_x - W_x)^2 + (X_y - W_y)^2} \][/tex]
[tex]\( W(-4, 28) \)[/tex] and [tex]\( X(8, 23) \)[/tex]:
[tex]\[ = \sqrt{(8 - (-4))^2 + (23 - 28)^2} = \sqrt{(12)^2 + (-5)^2} = \sqrt{144 + 25} = \sqrt{169} = 13 \][/tex]
2. Calculate distance [tex]\( X \)[/tex] to [tex]\( Y \)[/tex]:
[tex]\[ \text{Distance} = \sqrt{(Y_x - X_x)^2 + (Y_y - X_y)^2} \][/tex]
[tex]\( X(8, 23) \)[/tex] and [tex]\( Y(-13, 16) \)[/tex]:
[tex]\[ = \sqrt{(-13 - 8)^2 + (16 - 23)^2} = \sqrt{(-21)^2 + (-7)^2} = \sqrt{441 + 49} = \sqrt{490} \approx 22.1 \][/tex]
3. Calculate distance [tex]\( Y \)[/tex] to [tex]\( Z \)[/tex]:
[tex]\[ \text{Distance} = \sqrt{(Z_x - Y_x)^2 + (Z_y - Y_y)^2} \][/tex]
[tex]\( Y(-13, 16) \)[/tex] and [tex]\( Z(-4, 11) \)[/tex]:
[tex]\[ = \sqrt{(-4 - (-13))^2 + (11 - 16)^2} = \sqrt{(9)^2 + (-5)^2} = \sqrt{81 + 25} = \sqrt{106} \approx 10.3 \][/tex]
4. Calculate distance [tex]\( Z \)[/tex] to [tex]\( W \)[/tex]:
[tex]\[ \text{Distance} = \sqrt{(W_x - Z_x)^2 + (W_y - Z_y)^2} \][/tex]
[tex]\( Z(-4, 11) \)[/tex] and [tex]\( W(-4, 28) \)[/tex]:
[tex]\[ = \sqrt{(-4 - (-4))^2 + (28 - 11)^2} = \sqrt{(0)^2 + (17)^2} = \sqrt{17^2} = 17 \][/tex]
Now, sum up the distances to get the perimeter:
[tex]\[ \text{Perimeter} = 13 + 22.1 + 10.3 + 17 \approx 62.4 \text{ units} \][/tex]
Part B. Area:
To find the area of the polygon, we can use the Shoelace formula (or Gauss's area formula), which is given by:
[tex]\[ \text{Area} = \frac{1}{2} \left| \sum_{i=1}^{n-1} (x_i y_{i+1} - y_i x_{i+1}) + (x_n y_1 - y_n x_1) \right| \][/tex]
For vertices [tex]\( W(-4,28) \)[/tex], [tex]\( X(8,23) \)[/tex], [tex]\( Y(-13,16) \)[/tex], and [tex]\( Z(-4,11) \)[/tex]:
[tex]\[ \begin{aligned} \text{Area} &= \frac{1}{2} \left| (-4 \cdot 23 + 8 \cdot 16 + (-13) \cdot 11 + (-4) \cdot 28) - (28 \cdot 8 + 23 \cdot (-13) + 16 \cdot (-4) + 11 \cdot (-4)) \right| \\ &= \frac{1}{2} \left| ( -92 + 128 - 143 - 112) - ( 224 - 299 - 64 - 44) \right| \\ &= \frac{1}{2} \left| -219 -115 \right| \\ &= \frac{1}{2} \left| -104 \right|\\ &= 52 \end{aligned} \][/tex]
Thus, the area is:
[tex]\[ \text{Area} = 52 \text{ square units} \][/tex]
So, the answers are:
[tex]\[ \begin{aligned} \text{Part A: Perimeter} &= 62.4 \text{ units} \\ \text{Part B: Area} &= 52 \text{ square units} \end{aligned} \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.