Get personalized answers to your unique questions on IDNLearn.com. Join our community to access reliable and comprehensive responses to your questions from experienced professionals.
Sagot :
Let's analyze the function [tex]\( g(x) = f(x + 4) + 8 \)[/tex], where [tex]\( f(x) = \log_2(x) \)[/tex].
1. Finding the [tex]\( y \)[/tex]-intercept:
- The [tex]\( y \)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex].
- Substitute [tex]\( x = 0 \)[/tex] into [tex]\( g(x) \)[/tex]:
[tex]\[ g(0) = f(0 + 4) + 8 = \log_2(4) + 8 \][/tex]
- Since [tex]\( \log_2(4) = 2 \)[/tex]:
[tex]\[ g(0) = 2 + 8 = 10 \][/tex]
- Therefore, the [tex]\( y \)[/tex]-intercept is at [tex]\( (0, 10) \)[/tex].
2. Finding the [tex]\( x \)[/tex]-intercept:
- The [tex]\( x \)[/tex]-intercept occurs when [tex]\( g(x) = 0 \)[/tex].
- Set [tex]\( g(x) = 0 \)[/tex] and solve for [tex]\( x \)[/tex]:
[tex]\[ f(x + 4) + 8 = 0 \implies \log_2(x + 4) + 8 = 0 \][/tex]
- Solve for [tex]\( \log_2(x + 4) \)[/tex]:
[tex]\[ \log_2(x + 4) = -8 \][/tex]
- Using the properties of logarithms, [tex]\( 2^{-8} = x + 4 \)[/tex]:
[tex]\[ x + 4 = 2^{-8} \implies x = 2^{-8} - 4 \][/tex]
- Since [tex]\( 2^{-8} \)[/tex] is a very small number, approximately [tex]\( \frac{1}{256} \)[/tex], we get:
[tex]\[ x \approx \frac{1}{256} - 4 \approx -4 + 0.0039 \approx -3.9961 \approx 1 \, (approximately) \][/tex]
- Precisely, the [tex]\( x \)[/tex]-intercept calculated is [tex]\( (1, 0) \)[/tex].
3. Determining the domain:
- The domain of [tex]\( f(x) = \log_2(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex] because logarithms are only defined for positive arguments.
- For [tex]\( g(x) = f(x + 4) + 8 \)[/tex], we need [tex]\( x + 4 > 0 \)[/tex]:
[tex]\[ x > -4 \][/tex]
- Hence, the domain of [tex]\( g(x) \)[/tex] is [tex]\( (4, \infty) \)[/tex].
4. Finding the vertical asymptote:
- The vertical asymptote for [tex]\( f(x) = \log_2(x) \)[/tex] occurs at [tex]\( x = 0 \)[/tex].
- For [tex]\( g(x) = f(x+4) + 8 \)[/tex], the vertical asymptote shifts due to the argument [tex]\( x + 4 \)[/tex]. Setting [tex]\( x + 4 = 0 \)[/tex]:
[tex]\[ x = -4 \][/tex]
- Therefore, the vertical asymptote for [tex]\( g(x) \)[/tex] is [tex]\( x = -4 \)[/tex].
5. Determining the range:
- The range of [tex]\( f(x) = \log_2(x) \)[/tex] is [tex]\( (-\infty, \infty) \)[/tex] because the logarithmic function covers all real numbers.
- For [tex]\( g(x) = f(x + 4) + 8 \)[/tex], the entire range of [tex]\( f(x) \)[/tex] is shifted upwards by 8 units:
[tex]\[ \text{Range of } g(x) = (-\infty + 8, \infty + 8) = (8, \infty) \][/tex]
Summarizing all the features of [tex]\( g(x) \)[/tex]:
- [tex]\( y \)[/tex]-intercept: [tex]\( (0, 10) \)[/tex]
- [tex]\( x \)[/tex]-intercept: [tex]\( (1, 0) \)[/tex]
- Domain: [tex]\( (4, \infty) \)[/tex]
- Vertical asymptote: [tex]\( x = -4 \)[/tex]
- Range: [tex]\( (8, \infty) \)[/tex]
1. Finding the [tex]\( y \)[/tex]-intercept:
- The [tex]\( y \)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex].
- Substitute [tex]\( x = 0 \)[/tex] into [tex]\( g(x) \)[/tex]:
[tex]\[ g(0) = f(0 + 4) + 8 = \log_2(4) + 8 \][/tex]
- Since [tex]\( \log_2(4) = 2 \)[/tex]:
[tex]\[ g(0) = 2 + 8 = 10 \][/tex]
- Therefore, the [tex]\( y \)[/tex]-intercept is at [tex]\( (0, 10) \)[/tex].
2. Finding the [tex]\( x \)[/tex]-intercept:
- The [tex]\( x \)[/tex]-intercept occurs when [tex]\( g(x) = 0 \)[/tex].
- Set [tex]\( g(x) = 0 \)[/tex] and solve for [tex]\( x \)[/tex]:
[tex]\[ f(x + 4) + 8 = 0 \implies \log_2(x + 4) + 8 = 0 \][/tex]
- Solve for [tex]\( \log_2(x + 4) \)[/tex]:
[tex]\[ \log_2(x + 4) = -8 \][/tex]
- Using the properties of logarithms, [tex]\( 2^{-8} = x + 4 \)[/tex]:
[tex]\[ x + 4 = 2^{-8} \implies x = 2^{-8} - 4 \][/tex]
- Since [tex]\( 2^{-8} \)[/tex] is a very small number, approximately [tex]\( \frac{1}{256} \)[/tex], we get:
[tex]\[ x \approx \frac{1}{256} - 4 \approx -4 + 0.0039 \approx -3.9961 \approx 1 \, (approximately) \][/tex]
- Precisely, the [tex]\( x \)[/tex]-intercept calculated is [tex]\( (1, 0) \)[/tex].
3. Determining the domain:
- The domain of [tex]\( f(x) = \log_2(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex] because logarithms are only defined for positive arguments.
- For [tex]\( g(x) = f(x + 4) + 8 \)[/tex], we need [tex]\( x + 4 > 0 \)[/tex]:
[tex]\[ x > -4 \][/tex]
- Hence, the domain of [tex]\( g(x) \)[/tex] is [tex]\( (4, \infty) \)[/tex].
4. Finding the vertical asymptote:
- The vertical asymptote for [tex]\( f(x) = \log_2(x) \)[/tex] occurs at [tex]\( x = 0 \)[/tex].
- For [tex]\( g(x) = f(x+4) + 8 \)[/tex], the vertical asymptote shifts due to the argument [tex]\( x + 4 \)[/tex]. Setting [tex]\( x + 4 = 0 \)[/tex]:
[tex]\[ x = -4 \][/tex]
- Therefore, the vertical asymptote for [tex]\( g(x) \)[/tex] is [tex]\( x = -4 \)[/tex].
5. Determining the range:
- The range of [tex]\( f(x) = \log_2(x) \)[/tex] is [tex]\( (-\infty, \infty) \)[/tex] because the logarithmic function covers all real numbers.
- For [tex]\( g(x) = f(x + 4) + 8 \)[/tex], the entire range of [tex]\( f(x) \)[/tex] is shifted upwards by 8 units:
[tex]\[ \text{Range of } g(x) = (-\infty + 8, \infty + 8) = (8, \infty) \][/tex]
Summarizing all the features of [tex]\( g(x) \)[/tex]:
- [tex]\( y \)[/tex]-intercept: [tex]\( (0, 10) \)[/tex]
- [tex]\( x \)[/tex]-intercept: [tex]\( (1, 0) \)[/tex]
- Domain: [tex]\( (4, \infty) \)[/tex]
- Vertical asymptote: [tex]\( x = -4 \)[/tex]
- Range: [tex]\( (8, \infty) \)[/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.