IDNLearn.com helps you find the answers you need quickly and efficiently. Get timely and accurate answers to your questions from our dedicated community of experts who are here to help you.

Maximize:

[tex]\[
\begin{array}{l}
z = 5x + 3y \\
\text{Subject to:} \\
x + 4y \leq 28 \\
6x + y \leq 30 \\
x \geq 0 \\
y \geq 0
\end{array}
\][/tex]

Maximum is [tex]\(\square\)[/tex] at:

[tex]\[
\begin{array}{l}
x = \square \\
y = \square
\end{array}
\][/tex]


Sagot :

To maximize the objective function [tex]\( z = 5x + 3y \)[/tex] given the constraints:

1. [tex]\( x + 4y \leq 28 \)[/tex]
2. [tex]\( 6x + y \leq 30 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]

let’s follow the steps to solve this linear programming problem:

### Step 1: Identify the Constraints

The constraints define the feasible region. They are:
- [tex]\( x + 4y \leq 28 \)[/tex]
- [tex]\( 6x + y \leq 30 \)[/tex]
- [tex]\( x \geq 0 \)[/tex]
- [tex]\( y \geq 0 \)[/tex]

### Step 2: Graph the Constraints

To graph the constraints in a two-dimensional plane:
1. [tex]\( x + 4y = 28 \)[/tex]
- When [tex]\( x = 0 \)[/tex]: [tex]\( y = 7 \)[/tex]
- When [tex]\( y = 0 \)[/tex]: [tex]\( x = 28 \)[/tex]

2. [tex]\( 6x + y = 30 \)[/tex]
- When [tex]\( x = 0 \)[/tex]: [tex]\( y = 30 \)[/tex]
- When [tex]\( y = 0 \)[/tex]: [tex]\( x = 5 \)[/tex]

These lines, along with the non-negativity constraints [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex], define a polygonal feasible region on the xy-plane.

### Step 3: Determine the Feasible Region

The feasible region is bounded by the lines [tex]\( x + 4y = 28 \)[/tex], [tex]\( 6x + y = 30 \)[/tex], and the coordinate axes [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex]. This region is a convex polygon.

### Step 4: Identify the Corner Points

The vertices (corner points) of the feasible region are found by solving the system of linear equations given by the intersections of the constraints:
1. Intersection of [tex]\( x + 4y = 28 \)[/tex] and [tex]\( 6x + y = 30 \)[/tex]
2. Intersection of [tex]\( x + 4y = 28 \)[/tex] and [tex]\( y = 0 \)[/tex]
3. Intersection of [tex]\( 6x + y = 30 \)[/tex] and [tex]\( x = 0 \)[/tex]
4. The origin (0,0)

By solving these intersections, the vertices (corner points) are determined. These are:

1. [tex]\( (4, 6) \)[/tex]
2. [tex]\( (0, 7) \)[/tex]
3. [tex]\( (5, 0) \)[/tex]

### Step 5: Evaluate the Objective Function at Each Corner Point

Evaluate [tex]\( z = 5x + 3y \)[/tex] at each corner point:

1. At [tex]\( (4, 6) \)[/tex]:
- [tex]\( z = 5(4) + 3(6) = 20 + 18 = 38 \)[/tex]

2. At [tex]\( (0, 7) \)[/tex]:
- [tex]\( z = 5(0) + 3(7) = 0 + 21 = 21 \)[/tex]

3. At [tex]\( (5, 0) \)[/tex]:
- [tex]\( z = 5(5) + 3(0) = 25 + 0 = 25 \)[/tex]

### Step 6: Identify the Maximum Value

The maximum value of [tex]\( z \)[/tex] is obtained at the point where [tex]\( z = 38 \)[/tex].

### Conclusion

The maximum value of [tex]\( z \)[/tex] is [tex]\( 38 \)[/tex] at the point:
[tex]\[ \begin{array}{l} x = 4 \\ y = 6 \end{array} \][/tex]

So the final answer is:

Maximum is [tex]\( 38 \)[/tex] at
[tex]\[ \begin{array}{l} x = 4 \\ y = 6 \end{array} \][/tex]