IDNLearn.com helps you find the answers you need quickly and efficiently. Get timely and accurate answers to your questions from our dedicated community of experts who are here to help you.
Sagot :
To maximize the objective function [tex]\( z = 5x + 3y \)[/tex] given the constraints:
1. [tex]\( x + 4y \leq 28 \)[/tex]
2. [tex]\( 6x + y \leq 30 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
let’s follow the steps to solve this linear programming problem:
### Step 1: Identify the Constraints
The constraints define the feasible region. They are:
- [tex]\( x + 4y \leq 28 \)[/tex]
- [tex]\( 6x + y \leq 30 \)[/tex]
- [tex]\( x \geq 0 \)[/tex]
- [tex]\( y \geq 0 \)[/tex]
### Step 2: Graph the Constraints
To graph the constraints in a two-dimensional plane:
1. [tex]\( x + 4y = 28 \)[/tex]
- When [tex]\( x = 0 \)[/tex]: [tex]\( y = 7 \)[/tex]
- When [tex]\( y = 0 \)[/tex]: [tex]\( x = 28 \)[/tex]
2. [tex]\( 6x + y = 30 \)[/tex]
- When [tex]\( x = 0 \)[/tex]: [tex]\( y = 30 \)[/tex]
- When [tex]\( y = 0 \)[/tex]: [tex]\( x = 5 \)[/tex]
These lines, along with the non-negativity constraints [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex], define a polygonal feasible region on the xy-plane.
### Step 3: Determine the Feasible Region
The feasible region is bounded by the lines [tex]\( x + 4y = 28 \)[/tex], [tex]\( 6x + y = 30 \)[/tex], and the coordinate axes [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex]. This region is a convex polygon.
### Step 4: Identify the Corner Points
The vertices (corner points) of the feasible region are found by solving the system of linear equations given by the intersections of the constraints:
1. Intersection of [tex]\( x + 4y = 28 \)[/tex] and [tex]\( 6x + y = 30 \)[/tex]
2. Intersection of [tex]\( x + 4y = 28 \)[/tex] and [tex]\( y = 0 \)[/tex]
3. Intersection of [tex]\( 6x + y = 30 \)[/tex] and [tex]\( x = 0 \)[/tex]
4. The origin (0,0)
By solving these intersections, the vertices (corner points) are determined. These are:
1. [tex]\( (4, 6) \)[/tex]
2. [tex]\( (0, 7) \)[/tex]
3. [tex]\( (5, 0) \)[/tex]
### Step 5: Evaluate the Objective Function at Each Corner Point
Evaluate [tex]\( z = 5x + 3y \)[/tex] at each corner point:
1. At [tex]\( (4, 6) \)[/tex]:
- [tex]\( z = 5(4) + 3(6) = 20 + 18 = 38 \)[/tex]
2. At [tex]\( (0, 7) \)[/tex]:
- [tex]\( z = 5(0) + 3(7) = 0 + 21 = 21 \)[/tex]
3. At [tex]\( (5, 0) \)[/tex]:
- [tex]\( z = 5(5) + 3(0) = 25 + 0 = 25 \)[/tex]
### Step 6: Identify the Maximum Value
The maximum value of [tex]\( z \)[/tex] is obtained at the point where [tex]\( z = 38 \)[/tex].
### Conclusion
The maximum value of [tex]\( z \)[/tex] is [tex]\( 38 \)[/tex] at the point:
[tex]\[ \begin{array}{l} x = 4 \\ y = 6 \end{array} \][/tex]
So the final answer is:
Maximum is [tex]\( 38 \)[/tex] at
[tex]\[ \begin{array}{l} x = 4 \\ y = 6 \end{array} \][/tex]
1. [tex]\( x + 4y \leq 28 \)[/tex]
2. [tex]\( 6x + y \leq 30 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
let’s follow the steps to solve this linear programming problem:
### Step 1: Identify the Constraints
The constraints define the feasible region. They are:
- [tex]\( x + 4y \leq 28 \)[/tex]
- [tex]\( 6x + y \leq 30 \)[/tex]
- [tex]\( x \geq 0 \)[/tex]
- [tex]\( y \geq 0 \)[/tex]
### Step 2: Graph the Constraints
To graph the constraints in a two-dimensional plane:
1. [tex]\( x + 4y = 28 \)[/tex]
- When [tex]\( x = 0 \)[/tex]: [tex]\( y = 7 \)[/tex]
- When [tex]\( y = 0 \)[/tex]: [tex]\( x = 28 \)[/tex]
2. [tex]\( 6x + y = 30 \)[/tex]
- When [tex]\( x = 0 \)[/tex]: [tex]\( y = 30 \)[/tex]
- When [tex]\( y = 0 \)[/tex]: [tex]\( x = 5 \)[/tex]
These lines, along with the non-negativity constraints [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex], define a polygonal feasible region on the xy-plane.
### Step 3: Determine the Feasible Region
The feasible region is bounded by the lines [tex]\( x + 4y = 28 \)[/tex], [tex]\( 6x + y = 30 \)[/tex], and the coordinate axes [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex]. This region is a convex polygon.
### Step 4: Identify the Corner Points
The vertices (corner points) of the feasible region are found by solving the system of linear equations given by the intersections of the constraints:
1. Intersection of [tex]\( x + 4y = 28 \)[/tex] and [tex]\( 6x + y = 30 \)[/tex]
2. Intersection of [tex]\( x + 4y = 28 \)[/tex] and [tex]\( y = 0 \)[/tex]
3. Intersection of [tex]\( 6x + y = 30 \)[/tex] and [tex]\( x = 0 \)[/tex]
4. The origin (0,0)
By solving these intersections, the vertices (corner points) are determined. These are:
1. [tex]\( (4, 6) \)[/tex]
2. [tex]\( (0, 7) \)[/tex]
3. [tex]\( (5, 0) \)[/tex]
### Step 5: Evaluate the Objective Function at Each Corner Point
Evaluate [tex]\( z = 5x + 3y \)[/tex] at each corner point:
1. At [tex]\( (4, 6) \)[/tex]:
- [tex]\( z = 5(4) + 3(6) = 20 + 18 = 38 \)[/tex]
2. At [tex]\( (0, 7) \)[/tex]:
- [tex]\( z = 5(0) + 3(7) = 0 + 21 = 21 \)[/tex]
3. At [tex]\( (5, 0) \)[/tex]:
- [tex]\( z = 5(5) + 3(0) = 25 + 0 = 25 \)[/tex]
### Step 6: Identify the Maximum Value
The maximum value of [tex]\( z \)[/tex] is obtained at the point where [tex]\( z = 38 \)[/tex].
### Conclusion
The maximum value of [tex]\( z \)[/tex] is [tex]\( 38 \)[/tex] at the point:
[tex]\[ \begin{array}{l} x = 4 \\ y = 6 \end{array} \][/tex]
So the final answer is:
Maximum is [tex]\( 38 \)[/tex] at
[tex]\[ \begin{array}{l} x = 4 \\ y = 6 \end{array} \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.