Get expert advice and insights on any topic with IDNLearn.com. Join our community to access reliable and comprehensive responses to your questions from experienced professionals.

An experimenter places 1.00 mol of [tex]$H_2$[/tex] and 1.00 mol of [tex]$I_2$[/tex] in a 1.00 L flask. The substances react to produce hydrogen iodide:

[tex]\[ H_2 + I_2 \rightarrow 2 HI \][/tex]

When the contents of the flask come to equilibrium at [tex]$458^{\circ} C$[/tex], the experimenter finds that it contains 0.225 mol [tex]$H_2$[/tex], 0.225 mol [tex][tex]$I_2$[/tex][/tex], and 1.55 mol [tex]$HI$[/tex].

Calculate the standard free-energy change for the reaction at [tex]$458^{\circ} C$[/tex].

[tex]\[ \Delta G^{\circ} = \qquad \text{kJ/mol} \][/tex]


Sagot :

Sure! Here's a detailed, step-by-step solution to finding the standard free energy change ([tex]$\Delta G^{\circ}$[/tex]) for the reaction at [tex]\( 458^{\circ}C \)[/tex].

1. Initial Setup:
- We start with 1.00 mol of [tex]$H_2$[/tex] and 1.00 mol of [tex]$I_2$[/tex] in a 1.00 L flask.
- At equilibrium, the flask contains 0.225 mol of [tex]$H_2$[/tex], 0.225 mol of [tex]$I_2$[/tex], and 1.55 mol of [tex]$HI$[/tex].

2. Partial Pressures:
- Assuming the volume of the flask is 1.00 L, the partial pressures in the flask are proportional to the molar amounts.
- Thus, the partial pressures are:
- [tex]$P_{H_2} = 0.225$[/tex] atm
- [tex]$P_{I_2} = 0.225$[/tex] atm
- [tex]$P_{HI} = 1.55$[/tex] atm

3. Equilibrium Constant ([tex]$K_p$[/tex]):
- For the reaction: [tex]\( H_2 + I_2 \rightarrow 2 HI \)[/tex], the equilibrium constant in terms of partial pressures is given by:
[tex]\[ K_p = \frac{(P_{HI})^2}{P_{H_2} \cdot P_{I_2}} \][/tex]
- Plugging in the values, we get:
[tex]\[ K_p = \frac{(1.55)^2}{0.225 \cdot 0.225} \][/tex]
[tex]\[ K_p = \frac{2.4025}{0.050625} \][/tex]
[tex]\[ K_p \approx 47.45679012345679 \][/tex]

4. Determining the Standard Free-Energy Change ([tex]$\Delta G^{\circ}$[/tex]):
- The standard free-energy change can be calculated using the relationship:
[tex]\[ \Delta G^{\circ} = -RT \ln(K_p) \][/tex]
- Here, [tex]$R$[/tex] is the gas constant, [tex]\( 8.314 \; J/(mol \cdot K) \)[/tex], and [tex]$T$[/tex] is the temperature in Kelvin.
- The temperature in Kelvin is [tex]\( 458^{\circ}C + 273.15 = 731.15 \, K \)[/tex].

5. Calculating [tex]$\Delta G^{\circ}$[/tex]:
- First, we calculate the natural logarithm of [tex]$K_p$[/tex]:
[tex]\[ \ln(47.45679012345679) \approx 3.857 \][/tex]
- Now, we compute [tex]$\Delta G^{\circ}$[/tex]:
[tex]\[ \Delta G^{\circ} = -8.314 \, J/(mol \cdot K) \times 731.15 \, K \times 3.857 \][/tex]
[tex]\[ \Delta G^{\circ} \approx -23,462.99852761065 \, J/mol \][/tex]
- Converting this to [tex]$kJ/mol$[/tex] by dividing by 1000:
[tex]\[ \Delta G^{\circ} \approx -23.463 \, kJ/mol \][/tex]

Therefore, the standard free-energy change for the reaction at [tex]\( 458^{\circ}C \)[/tex] is:
[tex]\[ \Delta G^{\circ} \approx -23.463 \, kJ/mol \][/tex]