IDNLearn.com: Where your questions meet expert answers and community support. Find the information you need quickly and easily with our reliable and thorough Q&A platform.
Sagot :
To find the limit of the expression [tex]\(\lim_{x \rightarrow 0}\left(\frac{1}{x^2}-\frac{1}{\sin^2 x}\right)\)[/tex], let's proceed step-by-step.
### Step 1: Understand the Behavior of [tex]\( \sin(x) \)[/tex] Near Zero
We know that as [tex]\( x \)[/tex] approaches 0, [tex]\(\sin(x)\)[/tex] behaves very similarly to [tex]\( x \)[/tex]. More precisely, we can use the small-angle approximation:
[tex]\[ \sin(x) \approx x \][/tex]
when [tex]\( x \)[/tex] is near 0.
### Step 2: Rewrite the Expression Using the Approximation
However, to accurately find the limit, we need to consider this approximation more precisely. One useful identity for small angles is:
[tex]\[ \sin(x) = x - \frac{x^3}{6} + \mathcal{O}(x^5) \][/tex]
where [tex]\( \mathcal{O}(x^5) \)[/tex] represents higher-order terms that become negligible much faster than [tex]\( x^3 \)[/tex].
### Step 3: Substitute [tex]\( \sin(x) \)[/tex] into the Expression
Let’s use our more precise approximation ([tex]\(\sin(x) \approx x - \frac{x^3}{6}\)[/tex]):
[tex]\[ \sin^2(x) = \left(x - \frac{x^3}{6}\right)^2 \approx x^2 - \frac{x^4}{3} \][/tex]
So:
[tex]\[ \frac{1}{\sin^2(x)} \approx \frac{1}{x^2 - \frac{x^4}{3}} \][/tex]
### Step 4: Simplify the Denominator for [tex]\( \frac{1}{\sin^2(x)} \)[/tex]
For small [tex]\( x \)[/tex], [tex]\( x^4 \)[/tex] is significantly smaller than [tex]\( x^2 \)[/tex], so we can approximate:
[tex]\[ \frac{1}{x^2 - \frac{x^4}{3}} \approx \frac{1}{x^2 \left(1 - \frac{x^2}{3}\right)} \][/tex]
Recalling the binomial expansion for [tex]\( (1 - y)^{-1} \)[/tex] for small [tex]\( y \)[/tex]:
[tex]\[ (1 - \frac{x^2}{3})^{-1} \approx 1 + \frac{x^2}{3} \][/tex]
Thus:
[tex]\[ \frac{1}{x^2 \left(1 - \frac{x^2}{3}\right)} \approx \frac{1}{x^2} \left(1 + \frac{x^2}{3}\right) = \frac{1}{x^2} + \frac{1}{3} \][/tex]
### Step 5: Substitute and Combine Terms
Now substitute the approximation into the original limit expression:
[tex]\[ \frac{1}{x^2} - \frac{1}{\sin^2(x)} \approx \frac{1}{x^2} - \left(\frac{1}{x^2} + \frac{1}{3}\right) = \frac{1}{x^2} - \frac{1}{x^2} - \frac{1}{3} = -\frac{1}{3} \][/tex]
### Step 6: Take the Limit
Since all approximations hold as [tex]\( x \)[/tex] approaches 0, the remaining term is simply:
[tex]\[ \lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2(x)}\right) = -\frac{1}{3} \][/tex]
Therefore, the limit is:
[tex]\[ \boxed{-\frac{1}{3}} \][/tex]
### Step 1: Understand the Behavior of [tex]\( \sin(x) \)[/tex] Near Zero
We know that as [tex]\( x \)[/tex] approaches 0, [tex]\(\sin(x)\)[/tex] behaves very similarly to [tex]\( x \)[/tex]. More precisely, we can use the small-angle approximation:
[tex]\[ \sin(x) \approx x \][/tex]
when [tex]\( x \)[/tex] is near 0.
### Step 2: Rewrite the Expression Using the Approximation
However, to accurately find the limit, we need to consider this approximation more precisely. One useful identity for small angles is:
[tex]\[ \sin(x) = x - \frac{x^3}{6} + \mathcal{O}(x^5) \][/tex]
where [tex]\( \mathcal{O}(x^5) \)[/tex] represents higher-order terms that become negligible much faster than [tex]\( x^3 \)[/tex].
### Step 3: Substitute [tex]\( \sin(x) \)[/tex] into the Expression
Let’s use our more precise approximation ([tex]\(\sin(x) \approx x - \frac{x^3}{6}\)[/tex]):
[tex]\[ \sin^2(x) = \left(x - \frac{x^3}{6}\right)^2 \approx x^2 - \frac{x^4}{3} \][/tex]
So:
[tex]\[ \frac{1}{\sin^2(x)} \approx \frac{1}{x^2 - \frac{x^4}{3}} \][/tex]
### Step 4: Simplify the Denominator for [tex]\( \frac{1}{\sin^2(x)} \)[/tex]
For small [tex]\( x \)[/tex], [tex]\( x^4 \)[/tex] is significantly smaller than [tex]\( x^2 \)[/tex], so we can approximate:
[tex]\[ \frac{1}{x^2 - \frac{x^4}{3}} \approx \frac{1}{x^2 \left(1 - \frac{x^2}{3}\right)} \][/tex]
Recalling the binomial expansion for [tex]\( (1 - y)^{-1} \)[/tex] for small [tex]\( y \)[/tex]:
[tex]\[ (1 - \frac{x^2}{3})^{-1} \approx 1 + \frac{x^2}{3} \][/tex]
Thus:
[tex]\[ \frac{1}{x^2 \left(1 - \frac{x^2}{3}\right)} \approx \frac{1}{x^2} \left(1 + \frac{x^2}{3}\right) = \frac{1}{x^2} + \frac{1}{3} \][/tex]
### Step 5: Substitute and Combine Terms
Now substitute the approximation into the original limit expression:
[tex]\[ \frac{1}{x^2} - \frac{1}{\sin^2(x)} \approx \frac{1}{x^2} - \left(\frac{1}{x^2} + \frac{1}{3}\right) = \frac{1}{x^2} - \frac{1}{x^2} - \frac{1}{3} = -\frac{1}{3} \][/tex]
### Step 6: Take the Limit
Since all approximations hold as [tex]\( x \)[/tex] approaches 0, the remaining term is simply:
[tex]\[ \lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2(x)}\right) = -\frac{1}{3} \][/tex]
Therefore, the limit is:
[tex]\[ \boxed{-\frac{1}{3}} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.