IDNLearn.com offers expert insights and community wisdom to answer your queries. Our experts are ready to provide in-depth answers and practical solutions to any questions you may have.
Sagot :
To determine the acceleration of an electron when it enters a region with a uniform electric field, we can follow these steps:
### Step-by-Step Solution:
1. Identify the Known Quantities:
- Charge of the electron, [tex]\( q \)[/tex]: [tex]\( 1.6 \times 10^{-19} \)[/tex] coulombs
- Mass of the electron, [tex]\( m \)[/tex]: [tex]\( 9.11 \times 10^{-31} \)[/tex] kilograms
- Electric field strength, [tex]\( E \)[/tex]: [tex]\( 200 \)[/tex] N/C (Newtons per Coulomb)
- Initial velocity, [tex]\( v_i \)[/tex]: [tex]\( 3 \times 10^6 \)[/tex] m/s (although not directly needed for acceleration)
- Horizontal length of the field region, [tex]\( d \)[/tex]: [tex]\( 0.1 \)[/tex] m (although not directly needed for acceleration)
2. Calculate the Force Acting on the Electron:
Using the formula for the electric force [tex]\( F \)[/tex] on a charge in an electric field:
[tex]\[ F = qE \][/tex]
- Substituting the known values:
[tex]\[ F = (1.6 \times 10^{-19} \, \text{C}) \times (200 \, \text{N/C}) \][/tex]
- Simplifying the calculation:
[tex]\[ F = 3.2 \times 10^{-17} \, \text{N} \][/tex]
3. Determine the Acceleration:
Using Newton's second law, which relates force, mass, and acceleration:
[tex]\[ F = ma \implies a = \frac{F}{m} \][/tex]
- Substituting the values for [tex]\( F \)[/tex] and [tex]\( m \)[/tex]:
[tex]\[ a = \frac{3.2 \times 10^{-17} \, \text{N}}{9.11 \times 10^{-31} \, \text{kg}} \][/tex]
- Simplifying the calculation:
[tex]\[ a \approx 3.512 \times 10^{13} \, \text{m/s}^2 \][/tex]
Hence, the acceleration of the electron in the electric field is [tex]\( 3.512 \times 10^{13} \)[/tex] meters per second squared.
### Step-by-Step Solution:
1. Identify the Known Quantities:
- Charge of the electron, [tex]\( q \)[/tex]: [tex]\( 1.6 \times 10^{-19} \)[/tex] coulombs
- Mass of the electron, [tex]\( m \)[/tex]: [tex]\( 9.11 \times 10^{-31} \)[/tex] kilograms
- Electric field strength, [tex]\( E \)[/tex]: [tex]\( 200 \)[/tex] N/C (Newtons per Coulomb)
- Initial velocity, [tex]\( v_i \)[/tex]: [tex]\( 3 \times 10^6 \)[/tex] m/s (although not directly needed for acceleration)
- Horizontal length of the field region, [tex]\( d \)[/tex]: [tex]\( 0.1 \)[/tex] m (although not directly needed for acceleration)
2. Calculate the Force Acting on the Electron:
Using the formula for the electric force [tex]\( F \)[/tex] on a charge in an electric field:
[tex]\[ F = qE \][/tex]
- Substituting the known values:
[tex]\[ F = (1.6 \times 10^{-19} \, \text{C}) \times (200 \, \text{N/C}) \][/tex]
- Simplifying the calculation:
[tex]\[ F = 3.2 \times 10^{-17} \, \text{N} \][/tex]
3. Determine the Acceleration:
Using Newton's second law, which relates force, mass, and acceleration:
[tex]\[ F = ma \implies a = \frac{F}{m} \][/tex]
- Substituting the values for [tex]\( F \)[/tex] and [tex]\( m \)[/tex]:
[tex]\[ a = \frac{3.2 \times 10^{-17} \, \text{N}}{9.11 \times 10^{-31} \, \text{kg}} \][/tex]
- Simplifying the calculation:
[tex]\[ a \approx 3.512 \times 10^{13} \, \text{m/s}^2 \][/tex]
Hence, the acceleration of the electron in the electric field is [tex]\( 3.512 \times 10^{13} \)[/tex] meters per second squared.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.