At IDNLearn.com, find answers to your most pressing questions from experts and enthusiasts alike. Our community is ready to provide in-depth answers and practical solutions to any questions you may have.
Sagot :
To solve the equation [tex]\(\log (x)+\log (16)+\log (x-1)=\log (15)+\log \left(x^2-4\right)\)[/tex], we will use the properties of logarithms and algebraic manipulation. Here is the step-by-step solution:
1. Combine the logarithmic terms on each side using the property [tex]\(\log(a) + \log(b) = \log(ab)\)[/tex]:
[tex]\[ \log(x) + \log(16) + \log(x-1) = \log(15) + \log(x^2 - 4) \][/tex]
This simplifies to:
[tex]\[ \log(16x(x-1)) = \log(15(x^2 - 4)) \][/tex]
2. Set the arguments of the logarithms equal to each other since [tex]\(\log(A) = \log(B) \implies A = B\)[/tex]:
[tex]\[ 16x(x-1) = 15(x^2 - 4) \][/tex]
3. Expand and simplify the equation to form a single polynomial equation:
[tex]\[ 16x^2 - 16x = 15(x^2 - 4) \][/tex]
[tex]\[ 16x^2 - 16x = 15x^2 - 60 \][/tex]
4. Move all terms to one side to set the equation to zero:
[tex]\[ 16x^2 - 16x - 15x^2 + 60 = 0 \][/tex]
[tex]\[ x^2 - 16x + 60 = 0 \][/tex]
5. Solve the quadratic equation [tex]\(x^2 - 16x + 60 = 0\)[/tex]. We can do this using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = -16\)[/tex], and [tex]\(c = 60\)[/tex]:
[tex]\[ x = \frac{-(-16) \pm \sqrt{(-16)^2 - 4 \cdot 1 \cdot 60}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{16 \pm \sqrt{256 - 240}}{2} \][/tex]
[tex]\[ x = \frac{16 \pm \sqrt{16}}{2} \][/tex]
[tex]\[ x = \frac{16 \pm 4}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{20}{2} = 10 \quad \text{and} \quad x = \frac{12}{2} = 6 \][/tex]
6. Verify the solutions by checking if they satisfy the original equation and the domain constraints (logarithm arguments must be positive):
- For [tex]\(x = 10\)[/tex]:
[tex]\[ x = 10 \quad \Rightarrow \quad \log(10) + \log(16) + \log(9) \][/tex]
[tex]\[ = \log(16 \cdot 10 \cdot 9) = \log(1440) \][/tex]
Compare with:
[tex]\[ \log(15) + \log(96) = \log(15 \cdot 96) = \log(1440) \][/tex]
Both sides are equal, so [tex]\(x = 10\)[/tex] is a valid solution.
- For [tex]\(x = 6\)[/tex]:
[tex]\[ x = 6 \quad \Rightarrow \quad \log(6) + \log(16) + \log(5) \][/tex]
[tex]\[ = \log(16 \cdot 6 \cdot 5) = \log(480) \][/tex]
Compare with:
[tex]\[ \log(15) + \log(32) = \log(15 \cdot 32) = \log(480) \][/tex]
Both sides are equal, so [tex]\(x = 6\)[/tex] is a valid solution.
Therefore, the solutions to the equation [tex]\(\log (x)+\log (16)+\log (x-1)=\log (15)+\log \left(x^2-4\right)\)[/tex] are:
[tex]\[ x = 6 \quad \text{and} \quad x = 10 \][/tex]
1. Combine the logarithmic terms on each side using the property [tex]\(\log(a) + \log(b) = \log(ab)\)[/tex]:
[tex]\[ \log(x) + \log(16) + \log(x-1) = \log(15) + \log(x^2 - 4) \][/tex]
This simplifies to:
[tex]\[ \log(16x(x-1)) = \log(15(x^2 - 4)) \][/tex]
2. Set the arguments of the logarithms equal to each other since [tex]\(\log(A) = \log(B) \implies A = B\)[/tex]:
[tex]\[ 16x(x-1) = 15(x^2 - 4) \][/tex]
3. Expand and simplify the equation to form a single polynomial equation:
[tex]\[ 16x^2 - 16x = 15(x^2 - 4) \][/tex]
[tex]\[ 16x^2 - 16x = 15x^2 - 60 \][/tex]
4. Move all terms to one side to set the equation to zero:
[tex]\[ 16x^2 - 16x - 15x^2 + 60 = 0 \][/tex]
[tex]\[ x^2 - 16x + 60 = 0 \][/tex]
5. Solve the quadratic equation [tex]\(x^2 - 16x + 60 = 0\)[/tex]. We can do this using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = -16\)[/tex], and [tex]\(c = 60\)[/tex]:
[tex]\[ x = \frac{-(-16) \pm \sqrt{(-16)^2 - 4 \cdot 1 \cdot 60}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{16 \pm \sqrt{256 - 240}}{2} \][/tex]
[tex]\[ x = \frac{16 \pm \sqrt{16}}{2} \][/tex]
[tex]\[ x = \frac{16 \pm 4}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{20}{2} = 10 \quad \text{and} \quad x = \frac{12}{2} = 6 \][/tex]
6. Verify the solutions by checking if they satisfy the original equation and the domain constraints (logarithm arguments must be positive):
- For [tex]\(x = 10\)[/tex]:
[tex]\[ x = 10 \quad \Rightarrow \quad \log(10) + \log(16) + \log(9) \][/tex]
[tex]\[ = \log(16 \cdot 10 \cdot 9) = \log(1440) \][/tex]
Compare with:
[tex]\[ \log(15) + \log(96) = \log(15 \cdot 96) = \log(1440) \][/tex]
Both sides are equal, so [tex]\(x = 10\)[/tex] is a valid solution.
- For [tex]\(x = 6\)[/tex]:
[tex]\[ x = 6 \quad \Rightarrow \quad \log(6) + \log(16) + \log(5) \][/tex]
[tex]\[ = \log(16 \cdot 6 \cdot 5) = \log(480) \][/tex]
Compare with:
[tex]\[ \log(15) + \log(32) = \log(15 \cdot 32) = \log(480) \][/tex]
Both sides are equal, so [tex]\(x = 6\)[/tex] is a valid solution.
Therefore, the solutions to the equation [tex]\(\log (x)+\log (16)+\log (x-1)=\log (15)+\log \left(x^2-4\right)\)[/tex] are:
[tex]\[ x = 6 \quad \text{and} \quad x = 10 \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to assisting you again.