Get expert advice and insights on any topic with IDNLearn.com. Ask any question and receive comprehensive, well-informed responses from our dedicated team of experts.
Sagot :
Let's work through the problem step-by-step to find the inverse function [tex]\( f^{-1}(x) \)[/tex] of the function [tex]\( f(x) = \sqrt{3 - x} + 1 \)[/tex] and also determine its domain.
### Step 1: Set up the initial equation
We start with the function:
[tex]\[ y = \sqrt{3 - x} + 1 \][/tex]
To find the inverse, we need to solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex].
### Step 2: Isolate the square root
First, we subtract 1 from both sides:
[tex]\[ y - 1 = \sqrt{3 - x} \][/tex]
### Step 3: Square both sides
Square both sides to eliminate the square root:
[tex]\[ (y - 1)^2 = 3 - x \][/tex]
### Step 4: Solve for [tex]\( x \)[/tex]
Rearrange the equation to solve for [tex]\( x \)[/tex]:
[tex]\[ x = 3 - (y - 1)^2 \][/tex]
Thus, the inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ f^{-1}(x) = 3 - (x - 1)^2 \][/tex]
### Step 5: Determine the domain of the inverse function
The domain of the inverse function [tex]\( f^{-1}(x) \)[/tex] is derived from the range of the original function [tex]\( f(x) \)[/tex]. Since,
[tex]\[ f(x) = \sqrt{3 - x} + 1 \][/tex]
For [tex]\( f(x) \)[/tex] to be real, the argument of the square root must be non-negative:
[tex]\[ 3 - x \geq 0 \implies x \leq 3 \][/tex]
This tells us that the range of [tex]\( f(x) \)[/tex] is [tex]\( [1, \infty) \)[/tex] because:
[tex]\[ y = \sqrt{3 - x} + 1 \][/tex]
reaches a minimum value of 1 when [tex]\( x = 3 \)[/tex] and increases without bound as [tex]\( x \)[/tex] decreases.
Therefore, the domain of [tex]\( f^{-1}(x) \)[/tex] is [tex]\( [1, \infty) \)[/tex].
### Final Answer
Given this step-by-step process, we find that:
[tex]\[ f^{-1}(x) = 3 - (x - 1)^2 \][/tex]
and the domain of [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ [1, \infty) \][/tex]
Therefore:
[tex]\[ f^{-1}(x) = 3 - (x - 1)^2 \ \text{for the domain} \ [1, \infty) \][/tex]
Here is the formatted answer as requested:
[tex]\[ f^{-1}(x) = 3 - (x - 1)^2 \ \text{for the domain} \ [1, \infty) \][/tex]
### Step 1: Set up the initial equation
We start with the function:
[tex]\[ y = \sqrt{3 - x} + 1 \][/tex]
To find the inverse, we need to solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex].
### Step 2: Isolate the square root
First, we subtract 1 from both sides:
[tex]\[ y - 1 = \sqrt{3 - x} \][/tex]
### Step 3: Square both sides
Square both sides to eliminate the square root:
[tex]\[ (y - 1)^2 = 3 - x \][/tex]
### Step 4: Solve for [tex]\( x \)[/tex]
Rearrange the equation to solve for [tex]\( x \)[/tex]:
[tex]\[ x = 3 - (y - 1)^2 \][/tex]
Thus, the inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ f^{-1}(x) = 3 - (x - 1)^2 \][/tex]
### Step 5: Determine the domain of the inverse function
The domain of the inverse function [tex]\( f^{-1}(x) \)[/tex] is derived from the range of the original function [tex]\( f(x) \)[/tex]. Since,
[tex]\[ f(x) = \sqrt{3 - x} + 1 \][/tex]
For [tex]\( f(x) \)[/tex] to be real, the argument of the square root must be non-negative:
[tex]\[ 3 - x \geq 0 \implies x \leq 3 \][/tex]
This tells us that the range of [tex]\( f(x) \)[/tex] is [tex]\( [1, \infty) \)[/tex] because:
[tex]\[ y = \sqrt{3 - x} + 1 \][/tex]
reaches a minimum value of 1 when [tex]\( x = 3 \)[/tex] and increases without bound as [tex]\( x \)[/tex] decreases.
Therefore, the domain of [tex]\( f^{-1}(x) \)[/tex] is [tex]\( [1, \infty) \)[/tex].
### Final Answer
Given this step-by-step process, we find that:
[tex]\[ f^{-1}(x) = 3 - (x - 1)^2 \][/tex]
and the domain of [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ [1, \infty) \][/tex]
Therefore:
[tex]\[ f^{-1}(x) = 3 - (x - 1)^2 \ \text{for the domain} \ [1, \infty) \][/tex]
Here is the formatted answer as requested:
[tex]\[ f^{-1}(x) = 3 - (x - 1)^2 \ \text{for the domain} \ [1, \infty) \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. IDNLearn.com has the solutions you’re looking for. Thanks for visiting, and see you next time for more reliable information.