Get the answers you've been searching for with IDNLearn.com. Our platform is designed to provide reliable and thorough answers to all your questions, no matter the topic.
Sagot :
Certainly! Let's break down the solution to each part of the question step-by-step:
### (a) Use the fundamental theorem of algebra to determine the number of roots
The fundamental theorem of algebra states that every non-zero polynomial of degree [tex]\( n \)[/tex] with complex coefficients has exactly [tex]\( n \)[/tex] roots in the complex number system (counting multiplicities).
Consider the polynomial [tex]\( 2x^2 + 4x + 7 \)[/tex]:
- The highest exponent of [tex]\( x \)[/tex] in this polynomial is 2.
- Therefore, the polynomial is of degree 2.
According to the fundamental theorem of algebra, a polynomial of degree 2 has exactly 2 roots in the complex number system.
### (b) What are the roots of [tex]\( 2x^2 + 4x + 7 \)[/tex]?
To find the roots of the polynomial [tex]\( 2x^2 + 4x + 7 \)[/tex], we need to solve the equation [tex]\( 2x^2 + 4x + 7 = 0 \)[/tex].
Step 1: Identify the coefficients.
The equation is of the form [tex]\( ax^2 + bx + c = 0 \)[/tex] where:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 4 \)[/tex]
- [tex]\( c = 7 \)[/tex]
Step 2: Use the quadratic formula to find the roots.
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Step 3: Plug in the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex].
[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4(2)(7)}}{2(2)} \][/tex]
Step 4: Simplify inside the square root.
[tex]\[ x = \frac{-4 \pm \sqrt{16 - 56}}{4} \][/tex]
[tex]\[ x = \frac{-4 \pm \sqrt{-40}}{4} \][/tex]
Since the discriminant ([tex]\( b^2 - 4ac \)[/tex]) is negative ([tex]\( -40 \)[/tex]), the roots will be complex numbers.
Step 5: Simplify the expression further.
[tex]\[ x = \frac{-4 \pm \sqrt{-40}}{4} \][/tex]
Recall that [tex]\( \sqrt{-1} = i \)[/tex], where [tex]\( i \)[/tex] is the imaginary unit.
Thus,
[tex]\[\sqrt{-40} = \sqrt{40} \cdot i = \sqrt{4 \cdot 10} \cdot i = 2\sqrt{10} \cdot i \][/tex]
Now substitute this back into the expression:
[tex]\[ x = \frac{-4 \pm 2\sqrt{10} \cdot i}{4} \][/tex]
Step 6: Split the fraction.
[tex]\[ x = \frac{-4}{4} \pm \frac{2\sqrt{10} \cdot i}{4} \][/tex]
[tex]\[ x = -1 \pm \frac{\sqrt{10} \cdot i}{2} \][/tex]
Therefore, the roots are:
[tex]\[ x = -1 - \frac{\sqrt{10} \cdot i}{2} \][/tex]
[tex]\[ x = -1 + \frac{\sqrt{10} \cdot i}{2} \][/tex]
### Final Answer:
(a) The polynomial [tex]\( 2x^2 + 4x + 7 \)[/tex] has exactly 2 roots.
(b) The roots of the polynomial [tex]\( 2x^2 + 4x + 7 \)[/tex] are:
[tex]\[ x = -1 - \frac{\sqrt{10} \cdot i}{2} \][/tex]
[tex]\[ x = -1 + \frac{\sqrt{10} \cdot i}{2} \][/tex]
### (a) Use the fundamental theorem of algebra to determine the number of roots
The fundamental theorem of algebra states that every non-zero polynomial of degree [tex]\( n \)[/tex] with complex coefficients has exactly [tex]\( n \)[/tex] roots in the complex number system (counting multiplicities).
Consider the polynomial [tex]\( 2x^2 + 4x + 7 \)[/tex]:
- The highest exponent of [tex]\( x \)[/tex] in this polynomial is 2.
- Therefore, the polynomial is of degree 2.
According to the fundamental theorem of algebra, a polynomial of degree 2 has exactly 2 roots in the complex number system.
### (b) What are the roots of [tex]\( 2x^2 + 4x + 7 \)[/tex]?
To find the roots of the polynomial [tex]\( 2x^2 + 4x + 7 \)[/tex], we need to solve the equation [tex]\( 2x^2 + 4x + 7 = 0 \)[/tex].
Step 1: Identify the coefficients.
The equation is of the form [tex]\( ax^2 + bx + c = 0 \)[/tex] where:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 4 \)[/tex]
- [tex]\( c = 7 \)[/tex]
Step 2: Use the quadratic formula to find the roots.
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Step 3: Plug in the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex].
[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4(2)(7)}}{2(2)} \][/tex]
Step 4: Simplify inside the square root.
[tex]\[ x = \frac{-4 \pm \sqrt{16 - 56}}{4} \][/tex]
[tex]\[ x = \frac{-4 \pm \sqrt{-40}}{4} \][/tex]
Since the discriminant ([tex]\( b^2 - 4ac \)[/tex]) is negative ([tex]\( -40 \)[/tex]), the roots will be complex numbers.
Step 5: Simplify the expression further.
[tex]\[ x = \frac{-4 \pm \sqrt{-40}}{4} \][/tex]
Recall that [tex]\( \sqrt{-1} = i \)[/tex], where [tex]\( i \)[/tex] is the imaginary unit.
Thus,
[tex]\[\sqrt{-40} = \sqrt{40} \cdot i = \sqrt{4 \cdot 10} \cdot i = 2\sqrt{10} \cdot i \][/tex]
Now substitute this back into the expression:
[tex]\[ x = \frac{-4 \pm 2\sqrt{10} \cdot i}{4} \][/tex]
Step 6: Split the fraction.
[tex]\[ x = \frac{-4}{4} \pm \frac{2\sqrt{10} \cdot i}{4} \][/tex]
[tex]\[ x = -1 \pm \frac{\sqrt{10} \cdot i}{2} \][/tex]
Therefore, the roots are:
[tex]\[ x = -1 - \frac{\sqrt{10} \cdot i}{2} \][/tex]
[tex]\[ x = -1 + \frac{\sqrt{10} \cdot i}{2} \][/tex]
### Final Answer:
(a) The polynomial [tex]\( 2x^2 + 4x + 7 \)[/tex] has exactly 2 roots.
(b) The roots of the polynomial [tex]\( 2x^2 + 4x + 7 \)[/tex] are:
[tex]\[ x = -1 - \frac{\sqrt{10} \cdot i}{2} \][/tex]
[tex]\[ x = -1 + \frac{\sqrt{10} \cdot i}{2} \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. For clear and precise answers, choose IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.