Get detailed and accurate answers to your questions on IDNLearn.com. Ask anything and receive immediate, well-informed answers from our dedicated community of experts.
Sagot :
Let's find the slope [tex]\( (m) \)[/tex] and the y-intercept [tex]\( (b) \)[/tex] of the trendline for the given experimental data.
### Step-by-Step Solution:
1. Given Data:
- Pressures (atm): 1.05, 1.10, 1.15, 1.35, 1.45
- Masses (grams): 0.127, 0.133, 0.139, 0.151, 0.163
- Volumes (mL): 9.10, 18.20, 27.30, 45.50, 63.70
- Temperature: 21.5°C
2. Constants and Conversions:
- Ideal gas constant [tex]\( R \)[/tex] = 0.0821 L·atm/(K·mol)
- Molar mass of methane (CH₄) ≈ 16.04 g/mol
3. Convert Mass to Moles:
The number of moles ([tex]\( n \)[/tex]) of methane is calculated using the formula:
[tex]\[ n = \frac{\text{mass}}{\text{molar mass}} \][/tex]
Applying this to each mass in the data:
[tex]\[ \begin{aligned} n_1 & = \frac{0.127}{16.04} \approx 0.00792 \\ n_2 & = \frac{0.133}{16.04} \approx 0.00829 \\ n_3 & = \frac{0.139}{16.04} \approx 0.00867 \\ n_4 & = \frac{0.151}{16.04} \approx 0.00941 \\ n_5 & = \frac{0.163}{16.04} \approx 0.01016 \\ \end{aligned} \][/tex]
4. Plot the Data:
On the x-axis, plot the number of moles ([tex]\( n \)[/tex]) and on the y-axis, plot the corresponding volumes (mL):
[tex]\[ \begin{aligned} & (0.00792, 9.10) \\ & (0.00829, 18.20) \\ & (0.00867, 27.30) \\ & (0.00941, 45.50) \\ & (0.01016, 63.70) \\ \end{aligned} \][/tex]
5. Linear Regression:
Perform a linear regression to find the slope ([tex]\( m \)[/tex]) and y-intercept ([tex]\( b \)[/tex]) of the line that best fits the plotted data.
6. Result:
After performing the regression analysis:
- Slope [tex]\( (m) \)[/tex]: [tex]\( 24327.33 \, \text{mL/mol} \)[/tex]
- Y-intercept [tex]\( (b) \)[/tex]: [tex]\( -183.52 \, \text{mL} \)[/tex]
So, the slope [tex]\( (m) \)[/tex] is approximately [tex]\( 24327.33 \, \text{mL/mol} \)[/tex] and the y-intercept [tex]\( (b) \)[/tex] is approximately [tex]\( -183.52 \, \text{mL} \)[/tex].
### Step-by-Step Solution:
1. Given Data:
- Pressures (atm): 1.05, 1.10, 1.15, 1.35, 1.45
- Masses (grams): 0.127, 0.133, 0.139, 0.151, 0.163
- Volumes (mL): 9.10, 18.20, 27.30, 45.50, 63.70
- Temperature: 21.5°C
2. Constants and Conversions:
- Ideal gas constant [tex]\( R \)[/tex] = 0.0821 L·atm/(K·mol)
- Molar mass of methane (CH₄) ≈ 16.04 g/mol
3. Convert Mass to Moles:
The number of moles ([tex]\( n \)[/tex]) of methane is calculated using the formula:
[tex]\[ n = \frac{\text{mass}}{\text{molar mass}} \][/tex]
Applying this to each mass in the data:
[tex]\[ \begin{aligned} n_1 & = \frac{0.127}{16.04} \approx 0.00792 \\ n_2 & = \frac{0.133}{16.04} \approx 0.00829 \\ n_3 & = \frac{0.139}{16.04} \approx 0.00867 \\ n_4 & = \frac{0.151}{16.04} \approx 0.00941 \\ n_5 & = \frac{0.163}{16.04} \approx 0.01016 \\ \end{aligned} \][/tex]
4. Plot the Data:
On the x-axis, plot the number of moles ([tex]\( n \)[/tex]) and on the y-axis, plot the corresponding volumes (mL):
[tex]\[ \begin{aligned} & (0.00792, 9.10) \\ & (0.00829, 18.20) \\ & (0.00867, 27.30) \\ & (0.00941, 45.50) \\ & (0.01016, 63.70) \\ \end{aligned} \][/tex]
5. Linear Regression:
Perform a linear regression to find the slope ([tex]\( m \)[/tex]) and y-intercept ([tex]\( b \)[/tex]) of the line that best fits the plotted data.
6. Result:
After performing the regression analysis:
- Slope [tex]\( (m) \)[/tex]: [tex]\( 24327.33 \, \text{mL/mol} \)[/tex]
- Y-intercept [tex]\( (b) \)[/tex]: [tex]\( -183.52 \, \text{mL} \)[/tex]
So, the slope [tex]\( (m) \)[/tex] is approximately [tex]\( 24327.33 \, \text{mL/mol} \)[/tex] and the y-intercept [tex]\( (b) \)[/tex] is approximately [tex]\( -183.52 \, \text{mL} \)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Discover insightful answers at IDNLearn.com. We appreciate your visit and look forward to assisting you again.