Engage with knowledgeable experts and get accurate answers on IDNLearn.com. Ask anything and receive prompt, well-informed answers from our community of experienced experts.

If the value of gravity on the surface of Earth is [tex]98 \, \text{m/s}^2[/tex], at what height from the surface of Earth does the value of gravity become [tex]2.5 \, \text{m/s}^2[/tex]?

[tex]\[
\begin{array}{l}
m = 6 \times 10^{24} \, \text{kg} \\
r = 6400 \, \text{km}
\end{array}
\][/tex]


Sagot :

Certainly! Let's work through this problem step-by-step.

We are given several key pieces of information:

1. The gravitational acceleration on the surface of a planet, [tex]\( g_{\text{surface}} \)[/tex], is [tex]\( 98 \, \text{m/s}^2 \)[/tex].
2. The gravitational acceleration at some height above the surface, [tex]\( g_{\text{height}} \)[/tex], is [tex]\( 2.5 \, \text{m/s}^2 \)[/tex].
3. The mass of the planet, [tex]\( m \)[/tex], is [tex]\( 6 \times 10^{24} \, \text{kg} \)[/tex].
4. The radius of the planet, [tex]\( R \)[/tex], is [tex]\( 6400 \, \text{km} \)[/tex] (which is [tex]\( 6400 \times 10^3 \, \text{m} \)[/tex]).

We need to find the height [tex]\( h \)[/tex] above the surface where the gravitational acceleration is [tex]\( 2.5 \, \text{m/s}^2 \)[/tex].

### Step-by-Step Solution:

1. Gravitational Force Formula:

The gravitational force experienced by an object at a distance [tex]\( r \)[/tex] from the center of a planet of mass [tex]\( M \)[/tex] is given by:

[tex]\[ g = \frac{G M}{r^2} \][/tex]

where [tex]\( G \)[/tex] is the gravitational constant, [tex]\( G \approx 6.674 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex].

2. Gravitational Acceleration at Height [tex]\( h \)[/tex]:

At the height [tex]\( h \)[/tex] from the surface, the distance from the center of the planet is [tex]\( R + h \)[/tex].

[tex]\[ g_{\text{height}} = \frac{G M}{(R + h)^2} \][/tex]

3. Rearrange for [tex]\( R + h \)[/tex]:

We are given [tex]\( g_{\text{height}} = 2.5 \, \text{m/s}^2 \)[/tex].

[tex]\[ 2.5 = \frac{G \cdot 6 \times 10^{24}}{(6400 \times 10^3 + h)^2} \][/tex]

4. Solve for [tex]\( h \)[/tex]:

Rearrange the equation to solve for [tex]\( R + h \)[/tex]:

[tex]\[ 6400 \times 10^3 + h = \sqrt{\frac{G \cdot 6 \times 10^{24}}{2.5}} \][/tex]

Calculate the right-hand side:

[tex]\[ \sqrt{\frac{6.674 \times 10^{-11} \cdot 6 \times 10^{24}}{2.5}} \approx 12656065.739399428 \, \text{m} \][/tex]

5. Subtract the radius of the planet:

Subtract [tex]\( 6400 \times 10^3 \, \text{m} \)[/tex] to find the height [tex]\( h \)[/tex]:

[tex]\[ 12656065.739399428 \, \text{m} - 6400 \times 10^3 \, \text{m} = 6256065.739399428 \, \text{m} \][/tex]

So, the height [tex]\( h \)[/tex] above the planet's surface where the gravitational acceleration is [tex]\( 2.5 \, \text{m/s}^2 \)[/tex] is approximately [tex]\( 6256065.739399428 \, \text{m} \)[/tex].