Engage with knowledgeable experts and get accurate answers on IDNLearn.com. Ask anything and receive prompt, well-informed answers from our community of experienced experts.
Sagot :
Certainly! Let's work through this problem step-by-step.
We are given several key pieces of information:
1. The gravitational acceleration on the surface of a planet, [tex]\( g_{\text{surface}} \)[/tex], is [tex]\( 98 \, \text{m/s}^2 \)[/tex].
2. The gravitational acceleration at some height above the surface, [tex]\( g_{\text{height}} \)[/tex], is [tex]\( 2.5 \, \text{m/s}^2 \)[/tex].
3. The mass of the planet, [tex]\( m \)[/tex], is [tex]\( 6 \times 10^{24} \, \text{kg} \)[/tex].
4. The radius of the planet, [tex]\( R \)[/tex], is [tex]\( 6400 \, \text{km} \)[/tex] (which is [tex]\( 6400 \times 10^3 \, \text{m} \)[/tex]).
We need to find the height [tex]\( h \)[/tex] above the surface where the gravitational acceleration is [tex]\( 2.5 \, \text{m/s}^2 \)[/tex].
### Step-by-Step Solution:
1. Gravitational Force Formula:
The gravitational force experienced by an object at a distance [tex]\( r \)[/tex] from the center of a planet of mass [tex]\( M \)[/tex] is given by:
[tex]\[ g = \frac{G M}{r^2} \][/tex]
where [tex]\( G \)[/tex] is the gravitational constant, [tex]\( G \approx 6.674 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex].
2. Gravitational Acceleration at Height [tex]\( h \)[/tex]:
At the height [tex]\( h \)[/tex] from the surface, the distance from the center of the planet is [tex]\( R + h \)[/tex].
[tex]\[ g_{\text{height}} = \frac{G M}{(R + h)^2} \][/tex]
3. Rearrange for [tex]\( R + h \)[/tex]:
We are given [tex]\( g_{\text{height}} = 2.5 \, \text{m/s}^2 \)[/tex].
[tex]\[ 2.5 = \frac{G \cdot 6 \times 10^{24}}{(6400 \times 10^3 + h)^2} \][/tex]
4. Solve for [tex]\( h \)[/tex]:
Rearrange the equation to solve for [tex]\( R + h \)[/tex]:
[tex]\[ 6400 \times 10^3 + h = \sqrt{\frac{G \cdot 6 \times 10^{24}}{2.5}} \][/tex]
Calculate the right-hand side:
[tex]\[ \sqrt{\frac{6.674 \times 10^{-11} \cdot 6 \times 10^{24}}{2.5}} \approx 12656065.739399428 \, \text{m} \][/tex]
5. Subtract the radius of the planet:
Subtract [tex]\( 6400 \times 10^3 \, \text{m} \)[/tex] to find the height [tex]\( h \)[/tex]:
[tex]\[ 12656065.739399428 \, \text{m} - 6400 \times 10^3 \, \text{m} = 6256065.739399428 \, \text{m} \][/tex]
So, the height [tex]\( h \)[/tex] above the planet's surface where the gravitational acceleration is [tex]\( 2.5 \, \text{m/s}^2 \)[/tex] is approximately [tex]\( 6256065.739399428 \, \text{m} \)[/tex].
We are given several key pieces of information:
1. The gravitational acceleration on the surface of a planet, [tex]\( g_{\text{surface}} \)[/tex], is [tex]\( 98 \, \text{m/s}^2 \)[/tex].
2. The gravitational acceleration at some height above the surface, [tex]\( g_{\text{height}} \)[/tex], is [tex]\( 2.5 \, \text{m/s}^2 \)[/tex].
3. The mass of the planet, [tex]\( m \)[/tex], is [tex]\( 6 \times 10^{24} \, \text{kg} \)[/tex].
4. The radius of the planet, [tex]\( R \)[/tex], is [tex]\( 6400 \, \text{km} \)[/tex] (which is [tex]\( 6400 \times 10^3 \, \text{m} \)[/tex]).
We need to find the height [tex]\( h \)[/tex] above the surface where the gravitational acceleration is [tex]\( 2.5 \, \text{m/s}^2 \)[/tex].
### Step-by-Step Solution:
1. Gravitational Force Formula:
The gravitational force experienced by an object at a distance [tex]\( r \)[/tex] from the center of a planet of mass [tex]\( M \)[/tex] is given by:
[tex]\[ g = \frac{G M}{r^2} \][/tex]
where [tex]\( G \)[/tex] is the gravitational constant, [tex]\( G \approx 6.674 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex].
2. Gravitational Acceleration at Height [tex]\( h \)[/tex]:
At the height [tex]\( h \)[/tex] from the surface, the distance from the center of the planet is [tex]\( R + h \)[/tex].
[tex]\[ g_{\text{height}} = \frac{G M}{(R + h)^2} \][/tex]
3. Rearrange for [tex]\( R + h \)[/tex]:
We are given [tex]\( g_{\text{height}} = 2.5 \, \text{m/s}^2 \)[/tex].
[tex]\[ 2.5 = \frac{G \cdot 6 \times 10^{24}}{(6400 \times 10^3 + h)^2} \][/tex]
4. Solve for [tex]\( h \)[/tex]:
Rearrange the equation to solve for [tex]\( R + h \)[/tex]:
[tex]\[ 6400 \times 10^3 + h = \sqrt{\frac{G \cdot 6 \times 10^{24}}{2.5}} \][/tex]
Calculate the right-hand side:
[tex]\[ \sqrt{\frac{6.674 \times 10^{-11} \cdot 6 \times 10^{24}}{2.5}} \approx 12656065.739399428 \, \text{m} \][/tex]
5. Subtract the radius of the planet:
Subtract [tex]\( 6400 \times 10^3 \, \text{m} \)[/tex] to find the height [tex]\( h \)[/tex]:
[tex]\[ 12656065.739399428 \, \text{m} - 6400 \times 10^3 \, \text{m} = 6256065.739399428 \, \text{m} \][/tex]
So, the height [tex]\( h \)[/tex] above the planet's surface where the gravitational acceleration is [tex]\( 2.5 \, \text{m/s}^2 \)[/tex] is approximately [tex]\( 6256065.739399428 \, \text{m} \)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Discover insightful answers at IDNLearn.com. We appreciate your visit and look forward to assisting you again.