Find the best solutions to your problems with the help of IDNLearn.com's expert users. Get accurate answers to your questions from our community of experts who are always ready to provide timely and relevant solutions.

The number of bacteria in a culture decreases according to a continuous exponential decay model. The initial population in a study is 3100 bacteria, and there are 868 bacteria left after 5 minutes.

(a) Let [tex]$t$[/tex] be the time (in minutes) since the beginning of the study, and let [tex]$y$[/tex] be the number of bacteria at time [tex][tex]$t$[/tex][/tex]. Write a formula relating [tex]$y$[/tex] to [tex]$t$[/tex]. Use exact expressions to fill in the missing parts of the formula. Do not use approximations.

[tex]
y = \square e^{(\square t)}
[/tex]

(b) How many bacteria are there 17 minutes after the beginning of the study? Do not round any intermediate computations, and round your answer to the nearest whole number.

[tex]\square[/tex] bacteria


Sagot :

Let's solve the problem step-by-step while answering each part:

### Part (a):
We need to derive the formula relating [tex]\( y \)[/tex] (the number of bacteria) to [tex]\( t \)[/tex] (the time in minutes).

1. Initial Information:
- Initial population ([tex]\( y_0 \)[/tex]): [tex]\( 3100 \)[/tex] bacteria
- Remaining population after time [tex]\( t \)[/tex]): [tex]\( 868 \)[/tex] bacteria after [tex]\( 5 \)[/tex] minutes

2. Exponential Decay Formula:
We use the model [tex]\( y = y_0 \cdot e^{kt} \)[/tex], where [tex]\( k \)[/tex] is the decay constant.

3. Calculate the Decay Constant [tex]\( k \)[/tex]:
We know that [tex]\( y = 868 \)[/tex] when [tex]\( t = 5 \)[/tex].
So, we can plug these values into our formula:

[tex]\[ 868 = 3100 \cdot e^{5k} \][/tex]

4. Solve for [tex]\( k \)[/tex]:
[tex]\[ \frac{868}{3100} = e^{5k} \][/tex]

[tex]\[ e^{5k} = \frac{868}{3100} \][/tex]

Taking the natural logarithm on both sides:

[tex]\[ 5k = \ln \left( \frac{868}{3100} \right) \][/tex]

[tex]\[ k = \frac{\ln \left( \frac{868}{3100} \right)}{5} \][/tex]

5. Formula:
Substituting [tex]\( k \)[/tex] back into our exponential decay formula, we get:

[tex]\[ y = 3100 \cdot e^{\left( \frac{\ln \left( \frac{868}{3100} \right)}{5} \right) t} \][/tex]

So the formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex] is:

[tex]\[ y = 3100 \cdot e^{\left( \frac{\ln \left( \frac{868}{3100} \right)}{5} \right) t} \][/tex]

### Part (b):
Now we need to find the number of bacteria after 17 minutes.

1. Given:
[tex]\[ t = 17 \text{ minutes} \][/tex]

2. Using the Formula:
Plug [tex]\( t = 17 \)[/tex] into the formula we derived:

[tex]\[ y = 3100 \cdot e^{\left( \frac{\ln \left( \frac{868}{3100} \right)}{5} \times 17 \right)} \][/tex]

3. Calculate the Number of Bacteria:
Evaluating this expression directly:

[tex]\[ y \approx 41 \][/tex]

So, after 17 minutes, the number of bacteria in the culture is approximately 41.

### Final Answer:
(a) The formula relating [tex]\( y \)[/tex] to [tex]\( t \)[/tex] is:
[tex]\[ y = 3100 \cdot e^{\left( \frac{\ln \left( \frac{868}{3100} \right)}{5} \right) t} \][/tex]

(b) The number of bacteria after 17 minutes is:
[tex]\[ 41 \text{ bacteria} \][/tex]