Join the IDNLearn.com community and get your questions answered by knowledgeable individuals. Discover prompt and accurate responses from our experts, ensuring you get the information you need quickly.
Sagot :
To solve the equation [tex]\(16^x - 5 \times 4^{x+1} + 64 = 0\)[/tex], let's closely examine it step by step.
1. Rewrite the equation using powers of 2:
Observe that [tex]\(16\)[/tex] and [tex]\(4\)[/tex] can be expressed as powers of 2:
[tex]\[ 16 = 2^4 \quad \text{and} \quad 4 = 2^2 \][/tex]
Hence, we can rewrite the equation as:
[tex]\[ (2^4)^x - 5 \times (2^2)^{x+1} + 64 = 0 \][/tex]
2. Simplify the exponents:
Simplify the exponents using the power rules [tex]\( (a^m)^n = a^{mn} \)[/tex]:
[tex]\[ 2^{4x} - 5 \times 2^{2(x+1)} + 64 = 0 \][/tex]
Next, distribute the exponent in the second term:
[tex]\[ 2^{4x} - 5 \times 2^{2x+2} + 64 = 0 \][/tex]
3. Introduce a substitution:
To create a quadratic form, let [tex]\(y = 2^{2x}\)[/tex]. Notice that [tex]\(2^{4x} = (2^{2x})^2 = y^2\)[/tex] and [tex]\(2^{2x+2} = 2^2 \times 2^{2x} = 4y\)[/tex]. Substitute these into the equation:
[tex]\[ y^2 - 5 \times 4y + 64 = 0 \][/tex]
Simplify:
[tex]\[ y^2 - 20y + 64 = 0 \][/tex]
4. Solve the quadratic equation:
Solve the quadratic equation [tex]\(y^2 - 20y + 64 = 0\)[/tex] using the quadratic formula [tex]\(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = -20\)[/tex], and [tex]\(c = 64\)[/tex]:
[tex]\[ y = \frac{20 \pm \sqrt{(-20)^2 - 4 \cdot 1 \cdot 64}}{2 \cdot 1} \][/tex]
[tex]\[ y = \frac{20 \pm \sqrt{400 - 256}}{2} \][/tex]
[tex]\[ y = \frac{20 \pm \sqrt{144}}{2} \][/tex]
[tex]\[ y = \frac{20 \pm 12}{2} \][/tex]
This gives us two solutions:
[tex]\[ y = \frac{32}{2} = 16 \quad \text{and} \quad y = \frac{8}{2} = 4 \][/tex]
5. Convert back to [tex]\(x\)[/tex]:
Recall [tex]\(y = 2^{2x}\)[/tex], so we have two cases:
[tex]\[ 2^{2x} = 16 \quad \text{and} \quad 2^{2x} = 4 \][/tex]
Write these in exponential form:
[tex]\[ 2^{2x} = 2^4 \quad \text{and} \quad 2^{2x} = 2^2 \][/tex]
Equate the exponents:
[tex]\[ 2x = 4 \quad \Rightarrow \quad x = 2 \][/tex]
[tex]\[ 2x = 2 \quad \Rightarrow \quad x = 1 \][/tex]
6. Consider complex solutions:
The equations [tex]\(2^{2x} = 16\)[/tex] and [tex]\(2^{2x} = 4\)[/tex] could also have complex logarithmic solutions. Solving these using properties of logarithms and considering the periodicity of complex logarithms, we can determine the additional complex solutions:
[tex]\[ x = \frac{\log_e(4) + i\pi}{\log_e(2)}, \][/tex]
and
[tex]\[ x = 1 + \frac{i\pi}{\log_e(2)}. \][/tex]
Therefore, the complete set of solutions for the equation [tex]\(16^x - 5 \times 4^{x+1} + 64 = 0\)[/tex] is:
[tex]\[ x = 1, \, x = 2, \, x = \frac{\log(4) + I\pi}{\log(2)}, \, \text{and} \, x = 1 + \frac{I\pi}{\log(2)}. \][/tex]
1. Rewrite the equation using powers of 2:
Observe that [tex]\(16\)[/tex] and [tex]\(4\)[/tex] can be expressed as powers of 2:
[tex]\[ 16 = 2^4 \quad \text{and} \quad 4 = 2^2 \][/tex]
Hence, we can rewrite the equation as:
[tex]\[ (2^4)^x - 5 \times (2^2)^{x+1} + 64 = 0 \][/tex]
2. Simplify the exponents:
Simplify the exponents using the power rules [tex]\( (a^m)^n = a^{mn} \)[/tex]:
[tex]\[ 2^{4x} - 5 \times 2^{2(x+1)} + 64 = 0 \][/tex]
Next, distribute the exponent in the second term:
[tex]\[ 2^{4x} - 5 \times 2^{2x+2} + 64 = 0 \][/tex]
3. Introduce a substitution:
To create a quadratic form, let [tex]\(y = 2^{2x}\)[/tex]. Notice that [tex]\(2^{4x} = (2^{2x})^2 = y^2\)[/tex] and [tex]\(2^{2x+2} = 2^2 \times 2^{2x} = 4y\)[/tex]. Substitute these into the equation:
[tex]\[ y^2 - 5 \times 4y + 64 = 0 \][/tex]
Simplify:
[tex]\[ y^2 - 20y + 64 = 0 \][/tex]
4. Solve the quadratic equation:
Solve the quadratic equation [tex]\(y^2 - 20y + 64 = 0\)[/tex] using the quadratic formula [tex]\(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = -20\)[/tex], and [tex]\(c = 64\)[/tex]:
[tex]\[ y = \frac{20 \pm \sqrt{(-20)^2 - 4 \cdot 1 \cdot 64}}{2 \cdot 1} \][/tex]
[tex]\[ y = \frac{20 \pm \sqrt{400 - 256}}{2} \][/tex]
[tex]\[ y = \frac{20 \pm \sqrt{144}}{2} \][/tex]
[tex]\[ y = \frac{20 \pm 12}{2} \][/tex]
This gives us two solutions:
[tex]\[ y = \frac{32}{2} = 16 \quad \text{and} \quad y = \frac{8}{2} = 4 \][/tex]
5. Convert back to [tex]\(x\)[/tex]:
Recall [tex]\(y = 2^{2x}\)[/tex], so we have two cases:
[tex]\[ 2^{2x} = 16 \quad \text{and} \quad 2^{2x} = 4 \][/tex]
Write these in exponential form:
[tex]\[ 2^{2x} = 2^4 \quad \text{and} \quad 2^{2x} = 2^2 \][/tex]
Equate the exponents:
[tex]\[ 2x = 4 \quad \Rightarrow \quad x = 2 \][/tex]
[tex]\[ 2x = 2 \quad \Rightarrow \quad x = 1 \][/tex]
6. Consider complex solutions:
The equations [tex]\(2^{2x} = 16\)[/tex] and [tex]\(2^{2x} = 4\)[/tex] could also have complex logarithmic solutions. Solving these using properties of logarithms and considering the periodicity of complex logarithms, we can determine the additional complex solutions:
[tex]\[ x = \frac{\log_e(4) + i\pi}{\log_e(2)}, \][/tex]
and
[tex]\[ x = 1 + \frac{i\pi}{\log_e(2)}. \][/tex]
Therefore, the complete set of solutions for the equation [tex]\(16^x - 5 \times 4^{x+1} + 64 = 0\)[/tex] is:
[tex]\[ x = 1, \, x = 2, \, x = \frac{\log(4) + I\pi}{\log(2)}, \, \text{and} \, x = 1 + \frac{I\pi}{\log(2)}. \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.