IDNLearn.com makes it easy to get reliable answers from experts and enthusiasts alike. Discover comprehensive answers to your questions from our community of experienced professionals.
Sagot :
To solve the equation [tex]\(16^x - 5 \times 4^{x+1} + 64 = 0\)[/tex], let's closely examine it step by step.
1. Rewrite the equation using powers of 2:
Observe that [tex]\(16\)[/tex] and [tex]\(4\)[/tex] can be expressed as powers of 2:
[tex]\[ 16 = 2^4 \quad \text{and} \quad 4 = 2^2 \][/tex]
Hence, we can rewrite the equation as:
[tex]\[ (2^4)^x - 5 \times (2^2)^{x+1} + 64 = 0 \][/tex]
2. Simplify the exponents:
Simplify the exponents using the power rules [tex]\( (a^m)^n = a^{mn} \)[/tex]:
[tex]\[ 2^{4x} - 5 \times 2^{2(x+1)} + 64 = 0 \][/tex]
Next, distribute the exponent in the second term:
[tex]\[ 2^{4x} - 5 \times 2^{2x+2} + 64 = 0 \][/tex]
3. Introduce a substitution:
To create a quadratic form, let [tex]\(y = 2^{2x}\)[/tex]. Notice that [tex]\(2^{4x} = (2^{2x})^2 = y^2\)[/tex] and [tex]\(2^{2x+2} = 2^2 \times 2^{2x} = 4y\)[/tex]. Substitute these into the equation:
[tex]\[ y^2 - 5 \times 4y + 64 = 0 \][/tex]
Simplify:
[tex]\[ y^2 - 20y + 64 = 0 \][/tex]
4. Solve the quadratic equation:
Solve the quadratic equation [tex]\(y^2 - 20y + 64 = 0\)[/tex] using the quadratic formula [tex]\(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = -20\)[/tex], and [tex]\(c = 64\)[/tex]:
[tex]\[ y = \frac{20 \pm \sqrt{(-20)^2 - 4 \cdot 1 \cdot 64}}{2 \cdot 1} \][/tex]
[tex]\[ y = \frac{20 \pm \sqrt{400 - 256}}{2} \][/tex]
[tex]\[ y = \frac{20 \pm \sqrt{144}}{2} \][/tex]
[tex]\[ y = \frac{20 \pm 12}{2} \][/tex]
This gives us two solutions:
[tex]\[ y = \frac{32}{2} = 16 \quad \text{and} \quad y = \frac{8}{2} = 4 \][/tex]
5. Convert back to [tex]\(x\)[/tex]:
Recall [tex]\(y = 2^{2x}\)[/tex], so we have two cases:
[tex]\[ 2^{2x} = 16 \quad \text{and} \quad 2^{2x} = 4 \][/tex]
Write these in exponential form:
[tex]\[ 2^{2x} = 2^4 \quad \text{and} \quad 2^{2x} = 2^2 \][/tex]
Equate the exponents:
[tex]\[ 2x = 4 \quad \Rightarrow \quad x = 2 \][/tex]
[tex]\[ 2x = 2 \quad \Rightarrow \quad x = 1 \][/tex]
6. Consider complex solutions:
The equations [tex]\(2^{2x} = 16\)[/tex] and [tex]\(2^{2x} = 4\)[/tex] could also have complex logarithmic solutions. Solving these using properties of logarithms and considering the periodicity of complex logarithms, we can determine the additional complex solutions:
[tex]\[ x = \frac{\log_e(4) + i\pi}{\log_e(2)}, \][/tex]
and
[tex]\[ x = 1 + \frac{i\pi}{\log_e(2)}. \][/tex]
Therefore, the complete set of solutions for the equation [tex]\(16^x - 5 \times 4^{x+1} + 64 = 0\)[/tex] is:
[tex]\[ x = 1, \, x = 2, \, x = \frac{\log(4) + I\pi}{\log(2)}, \, \text{and} \, x = 1 + \frac{I\pi}{\log(2)}. \][/tex]
1. Rewrite the equation using powers of 2:
Observe that [tex]\(16\)[/tex] and [tex]\(4\)[/tex] can be expressed as powers of 2:
[tex]\[ 16 = 2^4 \quad \text{and} \quad 4 = 2^2 \][/tex]
Hence, we can rewrite the equation as:
[tex]\[ (2^4)^x - 5 \times (2^2)^{x+1} + 64 = 0 \][/tex]
2. Simplify the exponents:
Simplify the exponents using the power rules [tex]\( (a^m)^n = a^{mn} \)[/tex]:
[tex]\[ 2^{4x} - 5 \times 2^{2(x+1)} + 64 = 0 \][/tex]
Next, distribute the exponent in the second term:
[tex]\[ 2^{4x} - 5 \times 2^{2x+2} + 64 = 0 \][/tex]
3. Introduce a substitution:
To create a quadratic form, let [tex]\(y = 2^{2x}\)[/tex]. Notice that [tex]\(2^{4x} = (2^{2x})^2 = y^2\)[/tex] and [tex]\(2^{2x+2} = 2^2 \times 2^{2x} = 4y\)[/tex]. Substitute these into the equation:
[tex]\[ y^2 - 5 \times 4y + 64 = 0 \][/tex]
Simplify:
[tex]\[ y^2 - 20y + 64 = 0 \][/tex]
4. Solve the quadratic equation:
Solve the quadratic equation [tex]\(y^2 - 20y + 64 = 0\)[/tex] using the quadratic formula [tex]\(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = -20\)[/tex], and [tex]\(c = 64\)[/tex]:
[tex]\[ y = \frac{20 \pm \sqrt{(-20)^2 - 4 \cdot 1 \cdot 64}}{2 \cdot 1} \][/tex]
[tex]\[ y = \frac{20 \pm \sqrt{400 - 256}}{2} \][/tex]
[tex]\[ y = \frac{20 \pm \sqrt{144}}{2} \][/tex]
[tex]\[ y = \frac{20 \pm 12}{2} \][/tex]
This gives us two solutions:
[tex]\[ y = \frac{32}{2} = 16 \quad \text{and} \quad y = \frac{8}{2} = 4 \][/tex]
5. Convert back to [tex]\(x\)[/tex]:
Recall [tex]\(y = 2^{2x}\)[/tex], so we have two cases:
[tex]\[ 2^{2x} = 16 \quad \text{and} \quad 2^{2x} = 4 \][/tex]
Write these in exponential form:
[tex]\[ 2^{2x} = 2^4 \quad \text{and} \quad 2^{2x} = 2^2 \][/tex]
Equate the exponents:
[tex]\[ 2x = 4 \quad \Rightarrow \quad x = 2 \][/tex]
[tex]\[ 2x = 2 \quad \Rightarrow \quad x = 1 \][/tex]
6. Consider complex solutions:
The equations [tex]\(2^{2x} = 16\)[/tex] and [tex]\(2^{2x} = 4\)[/tex] could also have complex logarithmic solutions. Solving these using properties of logarithms and considering the periodicity of complex logarithms, we can determine the additional complex solutions:
[tex]\[ x = \frac{\log_e(4) + i\pi}{\log_e(2)}, \][/tex]
and
[tex]\[ x = 1 + \frac{i\pi}{\log_e(2)}. \][/tex]
Therefore, the complete set of solutions for the equation [tex]\(16^x - 5 \times 4^{x+1} + 64 = 0\)[/tex] is:
[tex]\[ x = 1, \, x = 2, \, x = \frac{\log(4) + I\pi}{\log(2)}, \, \text{and} \, x = 1 + \frac{I\pi}{\log(2)}. \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Find reliable answers at IDNLearn.com. Thanks for stopping by, and come back for more trustworthy solutions.