Find solutions to your problems with the help of IDNLearn.com's expert community. Our community provides accurate and timely answers to help you understand and solve any issue.
Sagot :
To address the problem, we will calculate the concentration of ions present in solutions of strong electrolytes step-by-step.
Part (a):
Given:
- 0.700 moles of [tex]\( \text{Ca(NO}_3\text{)}_2 \)[/tex] in 800.0 mL of solution.
First, let's find the concentration of [tex]\( \text{Ca(NO}_3\text{)}_2 \)[/tex] in moles per liter (M).
[tex]\[ M_{\text{Ca(NO}_3\text{)}_2} = \frac{0.700 \text{ moles}}{0.800 \text{ L}} = 0.875\text{ M} \][/tex]
1 mol of [tex]\( \text{Ca(NO}_3\text{)}_2 \)[/tex] dissociates into 1 mol of [tex]\( \text{Ca}^{2+} \)[/tex] and 2 mol of [tex]\( \text{NO}_3^- \)[/tex].
Thus:
[tex]\[ \text{M}_{\text{Ca}^{2+}} = 0.875\text{ M} \][/tex]
[tex]\[ \text{M}_{\text{NO}_3^-} = 2 \times 0.875\text{ M} = 1.75\text{ M} \][/tex]
Part (b):
Given:
- 8.5 moles of [tex]\( \text{Na}_2\text{SO}_4 \)[/tex] in 4.50 L of solution.
First, let's find the concentration of [tex]\( \text{Na}_2\text{SO}_4 \)[/tex] in moles per liter (M).
[tex]\[ M_{\text{Na}_2\text{SO}_4} = \frac{8.5 \text{ moles}}{4.50 \text{ L}} = 1.888\text{ M} \][/tex]
1 mol of [tex]\( \text{Na}_2\text{SO}_4 \)[/tex] dissociates into 2 mol of [tex]\( \text{Na}^+ \)[/tex] and 1 mol of [tex]\( \text{SO}_4^{2-} \)[/tex].
Thus:
[tex]\[ \text{M}_{\text{Na}^+} = 2 \times 1.888\text{ M} = 3.778\text{ M} \][/tex]
[tex]\[ \text{M}_{\text{SO}_4^{2-}} = 1.888\text{ M} \][/tex]
Part (c):
Given:
- 6.40 g of [tex]\( \text{NH}_4\text{Cl} \)[/tex] in 760.0 mL of solution.
- Molar mass of [tex]\( \text{NH}_4\text{Cl} \)[/tex] = 53.49 g/mol.
First, let's find the number of moles of [tex]\( \text{NH}_4\text{Cl} \)[/tex].
[tex]\[ \text{mol}_{\text{NH}_4\text{Cl}} = \frac{6.40 \text{ g}}{53.49 \text{ g/mol}} = 0.1197 \text{ mol} \][/tex]
Next, let's find the concentration in moles per liter (M).
[tex]\[ M_{\text{NH}_4\text{Cl}} = \frac{0.1197 \text{ mol}}{0.760 \text{ L}} = 0.1574\text{ M} \][/tex]
1 mol of [tex]\( \text{NH}_4\text{Cl} \)[/tex] dissociates into 1 mol of [tex]\( \text{NH}_4^+ \)[/tex] and 1 mol of [tex]\( \text{Cl}^- \)[/tex].
Thus:
[tex]\[ \text{M}_{\text{NH}_4^+} = 0.1574\text{M} \][/tex]
[tex]\[ \text{M}_{\text{Cl}^-} = 0.1574\text{M} \][/tex]
Part (d):
Given:
- 2.60 g of [tex]\( \text{K}_3\text{PO}_4 \)[/tex] in 940.0 mL of solution.
- Molar mass of [tex]\( \text{K}_3\text{PO}_4 \)[/tex] = 212.27 g/mol.
First, let's find the number of moles of [tex]\( \text{K}_3\text{PO}_4 \)[/tex].
[tex]\[ \text{mol}_{\text{K}_3\text{PO}_4} = \frac{2.60 \text{ g}}{212.27 \text{ g/mol}} = 0.01225 \text{ mol} \][/tex]
Next, let's find the concentration in moles per liter (M).
[tex]\[ M_{\text{K}_3\text{PO}_4} = \frac{0.01225 \text{ mol}}{0.940 \text{ L}} = 0.01303\text{ M} \][/tex]
1 mol of [tex]\( \text{K}_3\text{PO}_4 \)[/tex] dissociates into 3 mol of [tex]\( \text{K}^+ \)[/tex] and 1 mol of [tex]\( \text{PO}_4^{3-} \)[/tex].
Thus:
[tex]\[ \text{M}_{\text{K}^+} = 3 \times 0.01303\text{ M} = 0.03909\text{ M} \][/tex]
[tex]\[ \text{M}_{\text{PO}_4^{3-}} = 0.01303\text{ M} \][/tex]
Here's the final answer:
Part (a):
[tex]\[ \text{M}_{\text{Ca}^{2+}} = 0.875\text{ M} \][/tex]
[tex]\[ \text{M}_{\text{NO}_3^-} = 1.75\text{ M} \][/tex]
Part (b):
[tex]\[ \text{M}_{\text{Na}^+} = 3.778\text{ M} \][/tex]
[tex]\[ \text{M}_{\text{SO}_4^{2-}} = 1.888\text{ M} \][/tex]
Part (c):
[tex]\[ \text{M}_{\text{NH}_4^+} = 0.1574\text{ M} \][/tex]
[tex]\[ \text{M}_{\text{Cl}^-} = 0.1574\text{ M} \][/tex]
Part (d):
[tex]\[ \text{M}_{\text{K}^+} = 0.03909\text{ M} \][/tex]
[tex]\[ \text{M}_{\text{PO}_4^{3-}} = 0.01303\text{ M} \][/tex]
Part (a):
Given:
- 0.700 moles of [tex]\( \text{Ca(NO}_3\text{)}_2 \)[/tex] in 800.0 mL of solution.
First, let's find the concentration of [tex]\( \text{Ca(NO}_3\text{)}_2 \)[/tex] in moles per liter (M).
[tex]\[ M_{\text{Ca(NO}_3\text{)}_2} = \frac{0.700 \text{ moles}}{0.800 \text{ L}} = 0.875\text{ M} \][/tex]
1 mol of [tex]\( \text{Ca(NO}_3\text{)}_2 \)[/tex] dissociates into 1 mol of [tex]\( \text{Ca}^{2+} \)[/tex] and 2 mol of [tex]\( \text{NO}_3^- \)[/tex].
Thus:
[tex]\[ \text{M}_{\text{Ca}^{2+}} = 0.875\text{ M} \][/tex]
[tex]\[ \text{M}_{\text{NO}_3^-} = 2 \times 0.875\text{ M} = 1.75\text{ M} \][/tex]
Part (b):
Given:
- 8.5 moles of [tex]\( \text{Na}_2\text{SO}_4 \)[/tex] in 4.50 L of solution.
First, let's find the concentration of [tex]\( \text{Na}_2\text{SO}_4 \)[/tex] in moles per liter (M).
[tex]\[ M_{\text{Na}_2\text{SO}_4} = \frac{8.5 \text{ moles}}{4.50 \text{ L}} = 1.888\text{ M} \][/tex]
1 mol of [tex]\( \text{Na}_2\text{SO}_4 \)[/tex] dissociates into 2 mol of [tex]\( \text{Na}^+ \)[/tex] and 1 mol of [tex]\( \text{SO}_4^{2-} \)[/tex].
Thus:
[tex]\[ \text{M}_{\text{Na}^+} = 2 \times 1.888\text{ M} = 3.778\text{ M} \][/tex]
[tex]\[ \text{M}_{\text{SO}_4^{2-}} = 1.888\text{ M} \][/tex]
Part (c):
Given:
- 6.40 g of [tex]\( \text{NH}_4\text{Cl} \)[/tex] in 760.0 mL of solution.
- Molar mass of [tex]\( \text{NH}_4\text{Cl} \)[/tex] = 53.49 g/mol.
First, let's find the number of moles of [tex]\( \text{NH}_4\text{Cl} \)[/tex].
[tex]\[ \text{mol}_{\text{NH}_4\text{Cl}} = \frac{6.40 \text{ g}}{53.49 \text{ g/mol}} = 0.1197 \text{ mol} \][/tex]
Next, let's find the concentration in moles per liter (M).
[tex]\[ M_{\text{NH}_4\text{Cl}} = \frac{0.1197 \text{ mol}}{0.760 \text{ L}} = 0.1574\text{ M} \][/tex]
1 mol of [tex]\( \text{NH}_4\text{Cl} \)[/tex] dissociates into 1 mol of [tex]\( \text{NH}_4^+ \)[/tex] and 1 mol of [tex]\( \text{Cl}^- \)[/tex].
Thus:
[tex]\[ \text{M}_{\text{NH}_4^+} = 0.1574\text{M} \][/tex]
[tex]\[ \text{M}_{\text{Cl}^-} = 0.1574\text{M} \][/tex]
Part (d):
Given:
- 2.60 g of [tex]\( \text{K}_3\text{PO}_4 \)[/tex] in 940.0 mL of solution.
- Molar mass of [tex]\( \text{K}_3\text{PO}_4 \)[/tex] = 212.27 g/mol.
First, let's find the number of moles of [tex]\( \text{K}_3\text{PO}_4 \)[/tex].
[tex]\[ \text{mol}_{\text{K}_3\text{PO}_4} = \frac{2.60 \text{ g}}{212.27 \text{ g/mol}} = 0.01225 \text{ mol} \][/tex]
Next, let's find the concentration in moles per liter (M).
[tex]\[ M_{\text{K}_3\text{PO}_4} = \frac{0.01225 \text{ mol}}{0.940 \text{ L}} = 0.01303\text{ M} \][/tex]
1 mol of [tex]\( \text{K}_3\text{PO}_4 \)[/tex] dissociates into 3 mol of [tex]\( \text{K}^+ \)[/tex] and 1 mol of [tex]\( \text{PO}_4^{3-} \)[/tex].
Thus:
[tex]\[ \text{M}_{\text{K}^+} = 3 \times 0.01303\text{ M} = 0.03909\text{ M} \][/tex]
[tex]\[ \text{M}_{\text{PO}_4^{3-}} = 0.01303\text{ M} \][/tex]
Here's the final answer:
Part (a):
[tex]\[ \text{M}_{\text{Ca}^{2+}} = 0.875\text{ M} \][/tex]
[tex]\[ \text{M}_{\text{NO}_3^-} = 1.75\text{ M} \][/tex]
Part (b):
[tex]\[ \text{M}_{\text{Na}^+} = 3.778\text{ M} \][/tex]
[tex]\[ \text{M}_{\text{SO}_4^{2-}} = 1.888\text{ M} \][/tex]
Part (c):
[tex]\[ \text{M}_{\text{NH}_4^+} = 0.1574\text{ M} \][/tex]
[tex]\[ \text{M}_{\text{Cl}^-} = 0.1574\text{ M} \][/tex]
Part (d):
[tex]\[ \text{M}_{\text{K}^+} = 0.03909\text{ M} \][/tex]
[tex]\[ \text{M}_{\text{PO}_4^{3-}} = 0.01303\text{ M} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.