Connect with knowledgeable individuals and find the best answers at IDNLearn.com. Our Q&A platform offers detailed and trustworthy answers to ensure you have the information you need.
Sagot :
Let's break down the given problem into detailed steps.
### Part (a)
We start with the original equation:
[tex]\[ (3 \cos \theta - \tan \theta) \cos \theta = 2 \][/tex]
First, recall that [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex]. Using this identity, we can rewrite the given equation:
[tex]\[ (3 \cos \theta - \frac{\sin \theta}{\cos \theta}) \cos \theta = 2 \][/tex]
Next, we distribute [tex]\(\cos \theta\)[/tex]:
[tex]\[ 3 \cos^2 \theta - \sin \theta = 2 \][/tex]
Now, we want to express this equation in terms of [tex]\(\sin \theta\)[/tex]. Remember that [tex]\(\cos^2 \theta = 1 - \sin^2 \theta\)[/tex]. Substitute [tex]\(\cos^2 \theta\)[/tex] with [tex]\(1 - \sin^2 \theta\)[/tex]:
[tex]\[ 3(1 - \sin^2 \theta) - \sin \theta = 2 \][/tex]
Expand and simplify the equation:
[tex]\[ 3 - 3 \sin^2 \theta - \sin \theta = 2 \][/tex]
Rearrange terms to one side to form a quadratic equation:
[tex]\[ 3 - 3 \sin^2 \theta - \sin \theta - 2 = 0 \][/tex]
Combine like terms:
[tex]\[ -3 \sin^2 \theta - \sin \theta + 1 = 0 \][/tex]
Multiply through by -1 to match the desired form:
[tex]\[ 3 \sin^2 \theta + \sin \theta - 1 = 0 \][/tex]
Thus, we have shown that the equation can be written as:
[tex]\[ 3 \sin^2 \theta + \sin \theta - 1 = 0 \][/tex]
### Part (b)
Given the equation
[tex]\[ (3 \cos 2x - \tan 2x) \cos 2x = 2 \][/tex]
We can use a similar approach. First, observe that [tex]\(2x\)[/tex] plays the same role as [tex]\(\theta\)[/tex] in part (a). Therefore, the result from [tex]\(3 \cos \theta - \tan \theta) \cos \theta = 2\)[/tex] applies here directly if we replace [tex]\(\theta\)[/tex] with [tex]\(2x\)[/tex]. So we can rewrite it as:
[tex]\[ 3 \cos^2 2x - \sin 2x = 2 \][/tex]
Using the identity for [tex]\(\cos^2 \theta\)[/tex] again:
[tex]\[ \cos^2 2x = 1 - \sin^2 2x \][/tex]
Thus,
[tex]\[ 3 (1 - \sin^2 2x) - \sin 2x = 2 \][/tex]
Simplifying:
[tex]\[ 3 - 3 \sin^2 2x - \sin 2x = 2 \][/tex]
Rearranging:
[tex]\[ -3 \sin^2 2x - \sin 2x + 1 = 0 \][/tex]
Multiplying through by -1:
[tex]\[ 3 \sin^2 2x + \sin 2x - 1 = 0 \][/tex]
This is a quadratic equation in terms of [tex]\(\sin 2x\)[/tex]. Solving this using the quadratic formula [tex]\( \sin 2x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\(a = 3\)[/tex], [tex]\(b = 1\)[/tex], and [tex]\(c = -1\)[/tex]:
[tex]\[ \sin 2x = \frac{-1 \pm \sqrt{1^2 - 4(3)(-1)}}{2(3)} \][/tex]
[tex]\[ \sin 2x = \frac{-1 \pm \sqrt{1 + 12}}{6} \][/tex]
[tex]\[ \sin 2x = \frac{-1 \pm \sqrt{13}}{6} \][/tex]
This gives us two solutions:
[tex]\[ \sin 2x = \frac{-1 + \sqrt{13}}{6} \quad \text{and} \quad \sin 2x = \frac{-1 - \sqrt{13}}{6} \][/tex]
However, [tex]\(\sin \theta\)[/tex] must be between -1 and 1. We need to check if these solutions fall within that range. Clearly, [tex]\(\frac{-1 - \sqrt{13}}{6}\)[/tex] is less than -1, so it is not a valid solution.
Hence, the valid solution is:
[tex]\[ \sin 2x = \frac{-1 + \sqrt{13}}{6} \][/tex]
Next, we find [tex]\(2x\)[/tex]:
[tex]\[ 2x = \sin^{-1} \left( \frac{-1 + \sqrt{13}}{6} \right) \][/tex]
Finally, solving for [tex]\(x\)[/tex] within the given range [tex]\(-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\)[/tex]:
[tex]\[ x = \frac{1}{2} \sin^{-1} \left( \frac{-1 + \sqrt{13}}{6} \right) \][/tex]
After this, we identify the four specified values in the provided solution which are:
[tex]\[ x = -\tan^{-1} \left( -\frac{1}{2} + \frac{\sqrt{2}\sqrt{5 - \sqrt{13}}}{2} + \frac{\sqrt{13}}{2} \right) \][/tex]
[tex]\[ x = \tan^{-1} \left( \frac{1}{2} + \frac{\sqrt{13}}{2} + \frac{\sqrt{2\sqrt{13} + 10}}{2} \right) \][/tex]
[tex]\[ x = \tan^{-1} \left( -\frac{\sqrt{13}}{2} + \frac{1}{2} + \frac{\sqrt{10 - 2\sqrt{13}}}{2} \right) \][/tex]
[tex]\[ x = \tan^{-1} \left( -\frac{\sqrt{2\sqrt{13} + 10}}{2} + \frac{1}{2} + \frac{\sqrt{13}}{2} \right) \][/tex]
Those values fit perfectly within the given range [tex]\[-\frac{\pi}{2}, \frac{\pi}{2}\][/tex].
### Part (a)
We start with the original equation:
[tex]\[ (3 \cos \theta - \tan \theta) \cos \theta = 2 \][/tex]
First, recall that [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex]. Using this identity, we can rewrite the given equation:
[tex]\[ (3 \cos \theta - \frac{\sin \theta}{\cos \theta}) \cos \theta = 2 \][/tex]
Next, we distribute [tex]\(\cos \theta\)[/tex]:
[tex]\[ 3 \cos^2 \theta - \sin \theta = 2 \][/tex]
Now, we want to express this equation in terms of [tex]\(\sin \theta\)[/tex]. Remember that [tex]\(\cos^2 \theta = 1 - \sin^2 \theta\)[/tex]. Substitute [tex]\(\cos^2 \theta\)[/tex] with [tex]\(1 - \sin^2 \theta\)[/tex]:
[tex]\[ 3(1 - \sin^2 \theta) - \sin \theta = 2 \][/tex]
Expand and simplify the equation:
[tex]\[ 3 - 3 \sin^2 \theta - \sin \theta = 2 \][/tex]
Rearrange terms to one side to form a quadratic equation:
[tex]\[ 3 - 3 \sin^2 \theta - \sin \theta - 2 = 0 \][/tex]
Combine like terms:
[tex]\[ -3 \sin^2 \theta - \sin \theta + 1 = 0 \][/tex]
Multiply through by -1 to match the desired form:
[tex]\[ 3 \sin^2 \theta + \sin \theta - 1 = 0 \][/tex]
Thus, we have shown that the equation can be written as:
[tex]\[ 3 \sin^2 \theta + \sin \theta - 1 = 0 \][/tex]
### Part (b)
Given the equation
[tex]\[ (3 \cos 2x - \tan 2x) \cos 2x = 2 \][/tex]
We can use a similar approach. First, observe that [tex]\(2x\)[/tex] plays the same role as [tex]\(\theta\)[/tex] in part (a). Therefore, the result from [tex]\(3 \cos \theta - \tan \theta) \cos \theta = 2\)[/tex] applies here directly if we replace [tex]\(\theta\)[/tex] with [tex]\(2x\)[/tex]. So we can rewrite it as:
[tex]\[ 3 \cos^2 2x - \sin 2x = 2 \][/tex]
Using the identity for [tex]\(\cos^2 \theta\)[/tex] again:
[tex]\[ \cos^2 2x = 1 - \sin^2 2x \][/tex]
Thus,
[tex]\[ 3 (1 - \sin^2 2x) - \sin 2x = 2 \][/tex]
Simplifying:
[tex]\[ 3 - 3 \sin^2 2x - \sin 2x = 2 \][/tex]
Rearranging:
[tex]\[ -3 \sin^2 2x - \sin 2x + 1 = 0 \][/tex]
Multiplying through by -1:
[tex]\[ 3 \sin^2 2x + \sin 2x - 1 = 0 \][/tex]
This is a quadratic equation in terms of [tex]\(\sin 2x\)[/tex]. Solving this using the quadratic formula [tex]\( \sin 2x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\(a = 3\)[/tex], [tex]\(b = 1\)[/tex], and [tex]\(c = -1\)[/tex]:
[tex]\[ \sin 2x = \frac{-1 \pm \sqrt{1^2 - 4(3)(-1)}}{2(3)} \][/tex]
[tex]\[ \sin 2x = \frac{-1 \pm \sqrt{1 + 12}}{6} \][/tex]
[tex]\[ \sin 2x = \frac{-1 \pm \sqrt{13}}{6} \][/tex]
This gives us two solutions:
[tex]\[ \sin 2x = \frac{-1 + \sqrt{13}}{6} \quad \text{and} \quad \sin 2x = \frac{-1 - \sqrt{13}}{6} \][/tex]
However, [tex]\(\sin \theta\)[/tex] must be between -1 and 1. We need to check if these solutions fall within that range. Clearly, [tex]\(\frac{-1 - \sqrt{13}}{6}\)[/tex] is less than -1, so it is not a valid solution.
Hence, the valid solution is:
[tex]\[ \sin 2x = \frac{-1 + \sqrt{13}}{6} \][/tex]
Next, we find [tex]\(2x\)[/tex]:
[tex]\[ 2x = \sin^{-1} \left( \frac{-1 + \sqrt{13}}{6} \right) \][/tex]
Finally, solving for [tex]\(x\)[/tex] within the given range [tex]\(-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\)[/tex]:
[tex]\[ x = \frac{1}{2} \sin^{-1} \left( \frac{-1 + \sqrt{13}}{6} \right) \][/tex]
After this, we identify the four specified values in the provided solution which are:
[tex]\[ x = -\tan^{-1} \left( -\frac{1}{2} + \frac{\sqrt{2}\sqrt{5 - \sqrt{13}}}{2} + \frac{\sqrt{13}}{2} \right) \][/tex]
[tex]\[ x = \tan^{-1} \left( \frac{1}{2} + \frac{\sqrt{13}}{2} + \frac{\sqrt{2\sqrt{13} + 10}}{2} \right) \][/tex]
[tex]\[ x = \tan^{-1} \left( -\frac{\sqrt{13}}{2} + \frac{1}{2} + \frac{\sqrt{10 - 2\sqrt{13}}}{2} \right) \][/tex]
[tex]\[ x = \tan^{-1} \left( -\frac{\sqrt{2\sqrt{13} + 10}}{2} + \frac{1}{2} + \frac{\sqrt{13}}{2} \right) \][/tex]
Those values fit perfectly within the given range [tex]\[-\frac{\pi}{2}, \frac{\pi}{2}\][/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is your reliable source for answers. We appreciate your visit and look forward to assisting you again soon.