From simple questions to complex issues, IDNLearn.com has the answers you need. Ask any question and get a thorough, accurate answer from our community of experienced professionals.
Sagot :
Let's break down the given problem into detailed steps.
### Part (a)
We start with the original equation:
[tex]\[ (3 \cos \theta - \tan \theta) \cos \theta = 2 \][/tex]
First, recall that [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex]. Using this identity, we can rewrite the given equation:
[tex]\[ (3 \cos \theta - \frac{\sin \theta}{\cos \theta}) \cos \theta = 2 \][/tex]
Next, we distribute [tex]\(\cos \theta\)[/tex]:
[tex]\[ 3 \cos^2 \theta - \sin \theta = 2 \][/tex]
Now, we want to express this equation in terms of [tex]\(\sin \theta\)[/tex]. Remember that [tex]\(\cos^2 \theta = 1 - \sin^2 \theta\)[/tex]. Substitute [tex]\(\cos^2 \theta\)[/tex] with [tex]\(1 - \sin^2 \theta\)[/tex]:
[tex]\[ 3(1 - \sin^2 \theta) - \sin \theta = 2 \][/tex]
Expand and simplify the equation:
[tex]\[ 3 - 3 \sin^2 \theta - \sin \theta = 2 \][/tex]
Rearrange terms to one side to form a quadratic equation:
[tex]\[ 3 - 3 \sin^2 \theta - \sin \theta - 2 = 0 \][/tex]
Combine like terms:
[tex]\[ -3 \sin^2 \theta - \sin \theta + 1 = 0 \][/tex]
Multiply through by -1 to match the desired form:
[tex]\[ 3 \sin^2 \theta + \sin \theta - 1 = 0 \][/tex]
Thus, we have shown that the equation can be written as:
[tex]\[ 3 \sin^2 \theta + \sin \theta - 1 = 0 \][/tex]
### Part (b)
Given the equation
[tex]\[ (3 \cos 2x - \tan 2x) \cos 2x = 2 \][/tex]
We can use a similar approach. First, observe that [tex]\(2x\)[/tex] plays the same role as [tex]\(\theta\)[/tex] in part (a). Therefore, the result from [tex]\(3 \cos \theta - \tan \theta) \cos \theta = 2\)[/tex] applies here directly if we replace [tex]\(\theta\)[/tex] with [tex]\(2x\)[/tex]. So we can rewrite it as:
[tex]\[ 3 \cos^2 2x - \sin 2x = 2 \][/tex]
Using the identity for [tex]\(\cos^2 \theta\)[/tex] again:
[tex]\[ \cos^2 2x = 1 - \sin^2 2x \][/tex]
Thus,
[tex]\[ 3 (1 - \sin^2 2x) - \sin 2x = 2 \][/tex]
Simplifying:
[tex]\[ 3 - 3 \sin^2 2x - \sin 2x = 2 \][/tex]
Rearranging:
[tex]\[ -3 \sin^2 2x - \sin 2x + 1 = 0 \][/tex]
Multiplying through by -1:
[tex]\[ 3 \sin^2 2x + \sin 2x - 1 = 0 \][/tex]
This is a quadratic equation in terms of [tex]\(\sin 2x\)[/tex]. Solving this using the quadratic formula [tex]\( \sin 2x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\(a = 3\)[/tex], [tex]\(b = 1\)[/tex], and [tex]\(c = -1\)[/tex]:
[tex]\[ \sin 2x = \frac{-1 \pm \sqrt{1^2 - 4(3)(-1)}}{2(3)} \][/tex]
[tex]\[ \sin 2x = \frac{-1 \pm \sqrt{1 + 12}}{6} \][/tex]
[tex]\[ \sin 2x = \frac{-1 \pm \sqrt{13}}{6} \][/tex]
This gives us two solutions:
[tex]\[ \sin 2x = \frac{-1 + \sqrt{13}}{6} \quad \text{and} \quad \sin 2x = \frac{-1 - \sqrt{13}}{6} \][/tex]
However, [tex]\(\sin \theta\)[/tex] must be between -1 and 1. We need to check if these solutions fall within that range. Clearly, [tex]\(\frac{-1 - \sqrt{13}}{6}\)[/tex] is less than -1, so it is not a valid solution.
Hence, the valid solution is:
[tex]\[ \sin 2x = \frac{-1 + \sqrt{13}}{6} \][/tex]
Next, we find [tex]\(2x\)[/tex]:
[tex]\[ 2x = \sin^{-1} \left( \frac{-1 + \sqrt{13}}{6} \right) \][/tex]
Finally, solving for [tex]\(x\)[/tex] within the given range [tex]\(-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\)[/tex]:
[tex]\[ x = \frac{1}{2} \sin^{-1} \left( \frac{-1 + \sqrt{13}}{6} \right) \][/tex]
After this, we identify the four specified values in the provided solution which are:
[tex]\[ x = -\tan^{-1} \left( -\frac{1}{2} + \frac{\sqrt{2}\sqrt{5 - \sqrt{13}}}{2} + \frac{\sqrt{13}}{2} \right) \][/tex]
[tex]\[ x = \tan^{-1} \left( \frac{1}{2} + \frac{\sqrt{13}}{2} + \frac{\sqrt{2\sqrt{13} + 10}}{2} \right) \][/tex]
[tex]\[ x = \tan^{-1} \left( -\frac{\sqrt{13}}{2} + \frac{1}{2} + \frac{\sqrt{10 - 2\sqrt{13}}}{2} \right) \][/tex]
[tex]\[ x = \tan^{-1} \left( -\frac{\sqrt{2\sqrt{13} + 10}}{2} + \frac{1}{2} + \frac{\sqrt{13}}{2} \right) \][/tex]
Those values fit perfectly within the given range [tex]\[-\frac{\pi}{2}, \frac{\pi}{2}\][/tex].
### Part (a)
We start with the original equation:
[tex]\[ (3 \cos \theta - \tan \theta) \cos \theta = 2 \][/tex]
First, recall that [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex]. Using this identity, we can rewrite the given equation:
[tex]\[ (3 \cos \theta - \frac{\sin \theta}{\cos \theta}) \cos \theta = 2 \][/tex]
Next, we distribute [tex]\(\cos \theta\)[/tex]:
[tex]\[ 3 \cos^2 \theta - \sin \theta = 2 \][/tex]
Now, we want to express this equation in terms of [tex]\(\sin \theta\)[/tex]. Remember that [tex]\(\cos^2 \theta = 1 - \sin^2 \theta\)[/tex]. Substitute [tex]\(\cos^2 \theta\)[/tex] with [tex]\(1 - \sin^2 \theta\)[/tex]:
[tex]\[ 3(1 - \sin^2 \theta) - \sin \theta = 2 \][/tex]
Expand and simplify the equation:
[tex]\[ 3 - 3 \sin^2 \theta - \sin \theta = 2 \][/tex]
Rearrange terms to one side to form a quadratic equation:
[tex]\[ 3 - 3 \sin^2 \theta - \sin \theta - 2 = 0 \][/tex]
Combine like terms:
[tex]\[ -3 \sin^2 \theta - \sin \theta + 1 = 0 \][/tex]
Multiply through by -1 to match the desired form:
[tex]\[ 3 \sin^2 \theta + \sin \theta - 1 = 0 \][/tex]
Thus, we have shown that the equation can be written as:
[tex]\[ 3 \sin^2 \theta + \sin \theta - 1 = 0 \][/tex]
### Part (b)
Given the equation
[tex]\[ (3 \cos 2x - \tan 2x) \cos 2x = 2 \][/tex]
We can use a similar approach. First, observe that [tex]\(2x\)[/tex] plays the same role as [tex]\(\theta\)[/tex] in part (a). Therefore, the result from [tex]\(3 \cos \theta - \tan \theta) \cos \theta = 2\)[/tex] applies here directly if we replace [tex]\(\theta\)[/tex] with [tex]\(2x\)[/tex]. So we can rewrite it as:
[tex]\[ 3 \cos^2 2x - \sin 2x = 2 \][/tex]
Using the identity for [tex]\(\cos^2 \theta\)[/tex] again:
[tex]\[ \cos^2 2x = 1 - \sin^2 2x \][/tex]
Thus,
[tex]\[ 3 (1 - \sin^2 2x) - \sin 2x = 2 \][/tex]
Simplifying:
[tex]\[ 3 - 3 \sin^2 2x - \sin 2x = 2 \][/tex]
Rearranging:
[tex]\[ -3 \sin^2 2x - \sin 2x + 1 = 0 \][/tex]
Multiplying through by -1:
[tex]\[ 3 \sin^2 2x + \sin 2x - 1 = 0 \][/tex]
This is a quadratic equation in terms of [tex]\(\sin 2x\)[/tex]. Solving this using the quadratic formula [tex]\( \sin 2x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\(a = 3\)[/tex], [tex]\(b = 1\)[/tex], and [tex]\(c = -1\)[/tex]:
[tex]\[ \sin 2x = \frac{-1 \pm \sqrt{1^2 - 4(3)(-1)}}{2(3)} \][/tex]
[tex]\[ \sin 2x = \frac{-1 \pm \sqrt{1 + 12}}{6} \][/tex]
[tex]\[ \sin 2x = \frac{-1 \pm \sqrt{13}}{6} \][/tex]
This gives us two solutions:
[tex]\[ \sin 2x = \frac{-1 + \sqrt{13}}{6} \quad \text{and} \quad \sin 2x = \frac{-1 - \sqrt{13}}{6} \][/tex]
However, [tex]\(\sin \theta\)[/tex] must be between -1 and 1. We need to check if these solutions fall within that range. Clearly, [tex]\(\frac{-1 - \sqrt{13}}{6}\)[/tex] is less than -1, so it is not a valid solution.
Hence, the valid solution is:
[tex]\[ \sin 2x = \frac{-1 + \sqrt{13}}{6} \][/tex]
Next, we find [tex]\(2x\)[/tex]:
[tex]\[ 2x = \sin^{-1} \left( \frac{-1 + \sqrt{13}}{6} \right) \][/tex]
Finally, solving for [tex]\(x\)[/tex] within the given range [tex]\(-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\)[/tex]:
[tex]\[ x = \frac{1}{2} \sin^{-1} \left( \frac{-1 + \sqrt{13}}{6} \right) \][/tex]
After this, we identify the four specified values in the provided solution which are:
[tex]\[ x = -\tan^{-1} \left( -\frac{1}{2} + \frac{\sqrt{2}\sqrt{5 - \sqrt{13}}}{2} + \frac{\sqrt{13}}{2} \right) \][/tex]
[tex]\[ x = \tan^{-1} \left( \frac{1}{2} + \frac{\sqrt{13}}{2} + \frac{\sqrt{2\sqrt{13} + 10}}{2} \right) \][/tex]
[tex]\[ x = \tan^{-1} \left( -\frac{\sqrt{13}}{2} + \frac{1}{2} + \frac{\sqrt{10 - 2\sqrt{13}}}{2} \right) \][/tex]
[tex]\[ x = \tan^{-1} \left( -\frac{\sqrt{2\sqrt{13} + 10}}{2} + \frac{1}{2} + \frac{\sqrt{13}}{2} \right) \][/tex]
Those values fit perfectly within the given range [tex]\[-\frac{\pi}{2}, \frac{\pi}{2}\][/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is committed to providing accurate answers. Thanks for stopping by, and see you next time for more solutions.