Discover a wealth of information and get your questions answered on IDNLearn.com. Find reliable solutions to your questions quickly and easily with help from our experienced experts.
Sagot :
Certainly! Let's solve the limit:
[tex]\[ \lim_{x \rightarrow 0} \frac{27^x - 9^x - 3^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} \][/tex]
### Step-by-Step Solution
#### Step 1: Simplify the Limit Expression in the Numerator
First, observe the behavior of the function in the numerator as [tex]\( x \)[/tex] approaches 0:
- [tex]\( 27^x, 9^x, \)[/tex] and [tex]\( 3^x \)[/tex] are all exponential functions with positive bases.
- Specifically, [tex]\( 27 = 3^3 \)[/tex], [tex]\( 9 = 3^2 \)[/tex].
We can rewrite [tex]\( 27^x \)[/tex] and [tex]\( 9^x \)[/tex] using the base 3:
- [tex]\( 27^x = (3^3)^x = 3^{3x} \)[/tex],
- [tex]\( 9^x = (3^2)^x = 3^{2x} \)[/tex].
This simplifies the numerator to:
[tex]\[ 27^x - 9^x - 3^x + 1 = 3^{3x} - 3^{2x} - 3^x + 1 \][/tex]
As [tex]\( x \rightarrow 0 \)[/tex]:
- [tex]\( 3^{3x} \rightarrow 1 \)[/tex],
- [tex]\( 3^{2x} \rightarrow 1 \)[/tex],
- [tex]\( 3^x \rightarrow 1 \)[/tex].
Subsequently, the expressions [tex]\( 27^x - 9^x \)[/tex] and [tex]\( 3^x - 1 \)[/tex] approach 0. However, for precise behavior, we need to incorporate the corrections using Taylor expansions.
Taylor expansion for [tex]\( e^{f(x)} \approx 1 + f(x) \)[/tex] for small [tex]\( f(x) \)[/tex]:
- [tex]\( 3^{kx} \approx 1 + kx \ln 3 \)[/tex].
Thus,
- [tex]\( 3^{3x} \approx 1 + 3x \ln 3 \)[/tex],
- [tex]\( 3^{2x} \approx 1 + 2x \ln 3 \)[/tex],
- [tex]\( 3^x \approx 1 + x \ln 3 \)[/tex].
Plugging these into [tex]\( 3^{3x} - 3^{2x} - 3^x + 1 \)[/tex]:
[tex]\[ (1 + 3x \ln 3) - (1 + 2x \ln 3) - (1 + x \ln 3) + 1 = 3x \ln 3 - 2x \ln 3 - x \ln 3 = 0 \][/tex]
#### Step 2: Simplify the Denominator
For the denominator [tex]\( \sqrt{2} - \sqrt{1 + \cos x} \)[/tex], as [tex]\( x \rightarrow 0 \)[/tex]:
- [tex]\( \cos x \approx 1 - \frac{x^2}{2} \)[/tex], using the Taylor expansion for cosine around 0.
Therefore,
[tex]\[ \sqrt{1 + \cos x} \approx \sqrt{1 + 1 - \frac{x^2}{2}} = \sqrt{2 - \frac{x^2}{2}} \][/tex]
Using [tex]\( \sqrt{a + b} \approx \sqrt{a} (1 + \frac{b}{2a}) \)[/tex] for small [tex]\( b \)[/tex],
[tex]\[ \sqrt{2 - \frac{x^2}{2}} \approx \sqrt{2}\left( 1 - \frac{x^2}{8} \right) \][/tex]
So,
[tex]\[ \sqrt{2} - \sqrt{1 + \cos x} \approx \sqrt{2} - \sqrt{2} \left( 1 - \frac{x^2}{8} \right) = \sqrt{2} \cdot \frac{x^2}{8} = \frac{\sqrt{2} x^2}{8} \][/tex]
#### Step 3: Form the Limit
Putting it all together, the limit is
[tex]\[ \lim_{x \rightarrow 0} \frac{27^x - 9^x - 3^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} = \lim_{x \rightarrow 0} \frac{0}{\frac{\sqrt{2} x^2}{8}} \][/tex]
For the behavior near 0 using terms:
- The numerator [tex]\( 3^{3x} - 3^{2x} - 3^x + 1 \approx 3x (\ln 3)^2 \)[/tex].
So the problem reduces to the limit of:
[tex]\[ \lim_{x \rightarrow 0} \frac{3x (\ln 3)^3}{\frac{\sqrt{2} x^2}{8}} = \lim_{x \rightarrow 0} \frac{8 \times 3 (\ln 3)^2}{\sqrt{2} x} = \frac{24 (\ln 3)^2}{\sqrt{2} x} \text{ as } x \to 0 \][/tex]
Factoring, dividing out x terms:
[tex]\[ 8\sqrt{2} (\ln 3)^2 = 8 \sqrt{2} (\ln 3)^2. \][/tex]
Thus,
[tex]\[ \lim_{x \rightarrow 0} \frac{27^x - 9^x - 3^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} = 8\sqrt{2} \ln 3^2 \][/tex]
[tex]\[ \lim_{x \rightarrow 0} \frac{27^x - 9^x - 3^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} \][/tex]
### Step-by-Step Solution
#### Step 1: Simplify the Limit Expression in the Numerator
First, observe the behavior of the function in the numerator as [tex]\( x \)[/tex] approaches 0:
- [tex]\( 27^x, 9^x, \)[/tex] and [tex]\( 3^x \)[/tex] are all exponential functions with positive bases.
- Specifically, [tex]\( 27 = 3^3 \)[/tex], [tex]\( 9 = 3^2 \)[/tex].
We can rewrite [tex]\( 27^x \)[/tex] and [tex]\( 9^x \)[/tex] using the base 3:
- [tex]\( 27^x = (3^3)^x = 3^{3x} \)[/tex],
- [tex]\( 9^x = (3^2)^x = 3^{2x} \)[/tex].
This simplifies the numerator to:
[tex]\[ 27^x - 9^x - 3^x + 1 = 3^{3x} - 3^{2x} - 3^x + 1 \][/tex]
As [tex]\( x \rightarrow 0 \)[/tex]:
- [tex]\( 3^{3x} \rightarrow 1 \)[/tex],
- [tex]\( 3^{2x} \rightarrow 1 \)[/tex],
- [tex]\( 3^x \rightarrow 1 \)[/tex].
Subsequently, the expressions [tex]\( 27^x - 9^x \)[/tex] and [tex]\( 3^x - 1 \)[/tex] approach 0. However, for precise behavior, we need to incorporate the corrections using Taylor expansions.
Taylor expansion for [tex]\( e^{f(x)} \approx 1 + f(x) \)[/tex] for small [tex]\( f(x) \)[/tex]:
- [tex]\( 3^{kx} \approx 1 + kx \ln 3 \)[/tex].
Thus,
- [tex]\( 3^{3x} \approx 1 + 3x \ln 3 \)[/tex],
- [tex]\( 3^{2x} \approx 1 + 2x \ln 3 \)[/tex],
- [tex]\( 3^x \approx 1 + x \ln 3 \)[/tex].
Plugging these into [tex]\( 3^{3x} - 3^{2x} - 3^x + 1 \)[/tex]:
[tex]\[ (1 + 3x \ln 3) - (1 + 2x \ln 3) - (1 + x \ln 3) + 1 = 3x \ln 3 - 2x \ln 3 - x \ln 3 = 0 \][/tex]
#### Step 2: Simplify the Denominator
For the denominator [tex]\( \sqrt{2} - \sqrt{1 + \cos x} \)[/tex], as [tex]\( x \rightarrow 0 \)[/tex]:
- [tex]\( \cos x \approx 1 - \frac{x^2}{2} \)[/tex], using the Taylor expansion for cosine around 0.
Therefore,
[tex]\[ \sqrt{1 + \cos x} \approx \sqrt{1 + 1 - \frac{x^2}{2}} = \sqrt{2 - \frac{x^2}{2}} \][/tex]
Using [tex]\( \sqrt{a + b} \approx \sqrt{a} (1 + \frac{b}{2a}) \)[/tex] for small [tex]\( b \)[/tex],
[tex]\[ \sqrt{2 - \frac{x^2}{2}} \approx \sqrt{2}\left( 1 - \frac{x^2}{8} \right) \][/tex]
So,
[tex]\[ \sqrt{2} - \sqrt{1 + \cos x} \approx \sqrt{2} - \sqrt{2} \left( 1 - \frac{x^2}{8} \right) = \sqrt{2} \cdot \frac{x^2}{8} = \frac{\sqrt{2} x^2}{8} \][/tex]
#### Step 3: Form the Limit
Putting it all together, the limit is
[tex]\[ \lim_{x \rightarrow 0} \frac{27^x - 9^x - 3^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} = \lim_{x \rightarrow 0} \frac{0}{\frac{\sqrt{2} x^2}{8}} \][/tex]
For the behavior near 0 using terms:
- The numerator [tex]\( 3^{3x} - 3^{2x} - 3^x + 1 \approx 3x (\ln 3)^2 \)[/tex].
So the problem reduces to the limit of:
[tex]\[ \lim_{x \rightarrow 0} \frac{3x (\ln 3)^3}{\frac{\sqrt{2} x^2}{8}} = \lim_{x \rightarrow 0} \frac{8 \times 3 (\ln 3)^2}{\sqrt{2} x} = \frac{24 (\ln 3)^2}{\sqrt{2} x} \text{ as } x \to 0 \][/tex]
Factoring, dividing out x terms:
[tex]\[ 8\sqrt{2} (\ln 3)^2 = 8 \sqrt{2} (\ln 3)^2. \][/tex]
Thus,
[tex]\[ \lim_{x \rightarrow 0} \frac{27^x - 9^x - 3^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} = 8\sqrt{2} \ln 3^2 \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.