Get personalized answers to your unique questions on IDNLearn.com. Get accurate and timely answers to your queries from our extensive network of experienced professionals.
Sagot :
To find [tex]\( F'(x) \)[/tex] when [tex]\( F(x) = \int_{x^2 - 1}^0 f(t) \, dt \)[/tex]:
1. Start by applying the Leibniz rule for differentiation under the integral sign. The general form of this rule is:
[tex]\[ \frac{d}{dx} \left( \int_{u(x)}^{v(x)} f(t) \, dt \right) = f(v(x)) \cdot v'(x) - f(u(x)) \cdot u'(x) \][/tex]
where [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex] are the bounds of integration.
2. In our case, [tex]\( v(x) = 0 \)[/tex] and [tex]\( u(x) = x^2 - 1 \)[/tex]. We need to find [tex]\( \frac{d}{dx} \left( \int_{x^2 - 1}^0 f(t) \, dt \right) \)[/tex].
3. Since [tex]\( v(x) = 0 \)[/tex] is a constant, [tex]\( v'(x) = 0 \)[/tex]. So the term involving [tex]\( v(x) \)[/tex] will be zero:
[tex]\[ f(0) \cdot 0 = 0 \][/tex]
4. Now consider the lower bound [tex]\( u(x) = x^2 - 1 \)[/tex]. Its derivative with respect to [tex]\( x \)[/tex] is:
[tex]\[ u'(x) = \frac{d}{dx}(x^2 - 1) = 2x \][/tex]
5. Therefore, applying the Leibniz rule, [tex]\( F'(x) \)[/tex] becomes:
[tex]\[ F'(x) = -f(u(x)) \cdot u'(x) = -f(x^2 - 1) \cdot 2x \][/tex]
6. Now, we need to find [tex]\( F'(3) \)[/tex]:
[tex]\[ F'(3) = -f(3^2 - 1) \cdot 2 \cdot 3 = -f(8) \cdot 6 \][/tex]
7. Given that [tex]\( f(8) = -4 \)[/tex]:
[tex]\[ F'(3) = -(-4) \cdot 6 = 4 \cdot 6 = 24 \][/tex]
Hence, [tex]\( F'(3) = 24 \)[/tex].
1. Start by applying the Leibniz rule for differentiation under the integral sign. The general form of this rule is:
[tex]\[ \frac{d}{dx} \left( \int_{u(x)}^{v(x)} f(t) \, dt \right) = f(v(x)) \cdot v'(x) - f(u(x)) \cdot u'(x) \][/tex]
where [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex] are the bounds of integration.
2. In our case, [tex]\( v(x) = 0 \)[/tex] and [tex]\( u(x) = x^2 - 1 \)[/tex]. We need to find [tex]\( \frac{d}{dx} \left( \int_{x^2 - 1}^0 f(t) \, dt \right) \)[/tex].
3. Since [tex]\( v(x) = 0 \)[/tex] is a constant, [tex]\( v'(x) = 0 \)[/tex]. So the term involving [tex]\( v(x) \)[/tex] will be zero:
[tex]\[ f(0) \cdot 0 = 0 \][/tex]
4. Now consider the lower bound [tex]\( u(x) = x^2 - 1 \)[/tex]. Its derivative with respect to [tex]\( x \)[/tex] is:
[tex]\[ u'(x) = \frac{d}{dx}(x^2 - 1) = 2x \][/tex]
5. Therefore, applying the Leibniz rule, [tex]\( F'(x) \)[/tex] becomes:
[tex]\[ F'(x) = -f(u(x)) \cdot u'(x) = -f(x^2 - 1) \cdot 2x \][/tex]
6. Now, we need to find [tex]\( F'(3) \)[/tex]:
[tex]\[ F'(3) = -f(3^2 - 1) \cdot 2 \cdot 3 = -f(8) \cdot 6 \][/tex]
7. Given that [tex]\( f(8) = -4 \)[/tex]:
[tex]\[ F'(3) = -(-4) \cdot 6 = 4 \cdot 6 = 24 \][/tex]
Hence, [tex]\( F'(3) = 24 \)[/tex].
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.