IDNLearn.com: Your trusted source for finding accurate and reliable answers. Get the information you need from our community of experts who provide accurate and thorough answers to all your questions.

If [tex][tex]$F(x)=\int_{x^2-1}^0 f(t) \, dt$[/tex][/tex] and [tex]f(8)=-4[/tex], then [tex]F^{\prime}(3) =[/tex]

A. 24
B. -24
C. 12
D. 4
E. 8

[tex]F'(x) = f\left(x^2-1\right)[/tex]


Sagot :

To find [tex]\( F'(x) \)[/tex] when [tex]\( F(x) = \int_{x^2 - 1}^0 f(t) \, dt \)[/tex]:

1. Start by applying the Leibniz rule for differentiation under the integral sign. The general form of this rule is:
[tex]\[ \frac{d}{dx} \left( \int_{u(x)}^{v(x)} f(t) \, dt \right) = f(v(x)) \cdot v'(x) - f(u(x)) \cdot u'(x) \][/tex]
where [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex] are the bounds of integration.

2. In our case, [tex]\( v(x) = 0 \)[/tex] and [tex]\( u(x) = x^2 - 1 \)[/tex]. We need to find [tex]\( \frac{d}{dx} \left( \int_{x^2 - 1}^0 f(t) \, dt \right) \)[/tex].

3. Since [tex]\( v(x) = 0 \)[/tex] is a constant, [tex]\( v'(x) = 0 \)[/tex]. So the term involving [tex]\( v(x) \)[/tex] will be zero:
[tex]\[ f(0) \cdot 0 = 0 \][/tex]

4. Now consider the lower bound [tex]\( u(x) = x^2 - 1 \)[/tex]. Its derivative with respect to [tex]\( x \)[/tex] is:
[tex]\[ u'(x) = \frac{d}{dx}(x^2 - 1) = 2x \][/tex]

5. Therefore, applying the Leibniz rule, [tex]\( F'(x) \)[/tex] becomes:
[tex]\[ F'(x) = -f(u(x)) \cdot u'(x) = -f(x^2 - 1) \cdot 2x \][/tex]

6. Now, we need to find [tex]\( F'(3) \)[/tex]:
[tex]\[ F'(3) = -f(3^2 - 1) \cdot 2 \cdot 3 = -f(8) \cdot 6 \][/tex]

7. Given that [tex]\( f(8) = -4 \)[/tex]:
[tex]\[ F'(3) = -(-4) \cdot 6 = 4 \cdot 6 = 24 \][/tex]

Hence, [tex]\( F'(3) = 24 \)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.