Get expert advice and community support on IDNLearn.com. Our platform is designed to provide quick and accurate answers to any questions you may have.
Sagot :
To find [tex]\( F'(x) \)[/tex] when [tex]\( F(x) = \int_{x^2 - 1}^0 f(t) \, dt \)[/tex]:
1. Start by applying the Leibniz rule for differentiation under the integral sign. The general form of this rule is:
[tex]\[ \frac{d}{dx} \left( \int_{u(x)}^{v(x)} f(t) \, dt \right) = f(v(x)) \cdot v'(x) - f(u(x)) \cdot u'(x) \][/tex]
where [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex] are the bounds of integration.
2. In our case, [tex]\( v(x) = 0 \)[/tex] and [tex]\( u(x) = x^2 - 1 \)[/tex]. We need to find [tex]\( \frac{d}{dx} \left( \int_{x^2 - 1}^0 f(t) \, dt \right) \)[/tex].
3. Since [tex]\( v(x) = 0 \)[/tex] is a constant, [tex]\( v'(x) = 0 \)[/tex]. So the term involving [tex]\( v(x) \)[/tex] will be zero:
[tex]\[ f(0) \cdot 0 = 0 \][/tex]
4. Now consider the lower bound [tex]\( u(x) = x^2 - 1 \)[/tex]. Its derivative with respect to [tex]\( x \)[/tex] is:
[tex]\[ u'(x) = \frac{d}{dx}(x^2 - 1) = 2x \][/tex]
5. Therefore, applying the Leibniz rule, [tex]\( F'(x) \)[/tex] becomes:
[tex]\[ F'(x) = -f(u(x)) \cdot u'(x) = -f(x^2 - 1) \cdot 2x \][/tex]
6. Now, we need to find [tex]\( F'(3) \)[/tex]:
[tex]\[ F'(3) = -f(3^2 - 1) \cdot 2 \cdot 3 = -f(8) \cdot 6 \][/tex]
7. Given that [tex]\( f(8) = -4 \)[/tex]:
[tex]\[ F'(3) = -(-4) \cdot 6 = 4 \cdot 6 = 24 \][/tex]
Hence, [tex]\( F'(3) = 24 \)[/tex].
1. Start by applying the Leibniz rule for differentiation under the integral sign. The general form of this rule is:
[tex]\[ \frac{d}{dx} \left( \int_{u(x)}^{v(x)} f(t) \, dt \right) = f(v(x)) \cdot v'(x) - f(u(x)) \cdot u'(x) \][/tex]
where [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex] are the bounds of integration.
2. In our case, [tex]\( v(x) = 0 \)[/tex] and [tex]\( u(x) = x^2 - 1 \)[/tex]. We need to find [tex]\( \frac{d}{dx} \left( \int_{x^2 - 1}^0 f(t) \, dt \right) \)[/tex].
3. Since [tex]\( v(x) = 0 \)[/tex] is a constant, [tex]\( v'(x) = 0 \)[/tex]. So the term involving [tex]\( v(x) \)[/tex] will be zero:
[tex]\[ f(0) \cdot 0 = 0 \][/tex]
4. Now consider the lower bound [tex]\( u(x) = x^2 - 1 \)[/tex]. Its derivative with respect to [tex]\( x \)[/tex] is:
[tex]\[ u'(x) = \frac{d}{dx}(x^2 - 1) = 2x \][/tex]
5. Therefore, applying the Leibniz rule, [tex]\( F'(x) \)[/tex] becomes:
[tex]\[ F'(x) = -f(u(x)) \cdot u'(x) = -f(x^2 - 1) \cdot 2x \][/tex]
6. Now, we need to find [tex]\( F'(3) \)[/tex]:
[tex]\[ F'(3) = -f(3^2 - 1) \cdot 2 \cdot 3 = -f(8) \cdot 6 \][/tex]
7. Given that [tex]\( f(8) = -4 \)[/tex]:
[tex]\[ F'(3) = -(-4) \cdot 6 = 4 \cdot 6 = 24 \][/tex]
Hence, [tex]\( F'(3) = 24 \)[/tex].
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.