IDNLearn.com provides a user-friendly platform for finding and sharing knowledge. Find the answers you need quickly and accurately with help from our knowledgeable and experienced experts.
Sagot :
To determine [tex]\( F'(x) \)[/tex] for the function [tex]\( F(x) = \int_{x^2 - 1}^{0} f(t) \, dt \)[/tex], we will use the Fundamental Theorem of Calculus along with the Chain Rule. Let's break down the process step by step:
1. Express [tex]\(F(x)\)[/tex]:
[tex]\[ F(x) = \int_{x^2 - 1}^{0} f(t) \, dt \][/tex]
2. Apply the Fundamental Theorem of Calculus:
The derivative of an integral with variable limits [tex]\(a(x)\)[/tex] to [tex]\(b(x)\)[/tex] is given by:
[tex]\[ \frac{d}{dx} \left( \int_{a(x)}^{b(x)} f(t) \, dt \right) = f\big(b(x)\big) \cdot b'(x) - f\big(a(x)\big) \cdot a'(x) \][/tex]
Here, [tex]\(a(x) = x^2 - 1\)[/tex] and [tex]\(b(x) = 0\)[/tex].
3. Differentiate the limits:
- The upper limit [tex]\(b(x)\)[/tex] is [tex]\(0\)[/tex], which is a constant. Therefore:
[tex]\[ b'(x) = \frac{d}{dx}(0) = 0 \][/tex]
- The lower limit [tex]\(a(x)\)[/tex] is [tex]\(x^2 - 1\)[/tex]. Therefore:
[tex]\[ a'(x) = \frac{d}{dx}(x^2 - 1) = 2x \][/tex]
4. Substitute into the derivative formula:
Using the formula from the Fundamental Theorem of Calculus:
[tex]\[ F'(x) = f\big(0\big) \cdot 0 - f\big(x^2 - 1\big) \cdot 2x \][/tex]
Since [tex]\(f(0) \cdot 0 = 0\)[/tex], the expression simplifies to:
[tex]\[ F'(x) = -f\big(x^2 - 1\big) \cdot 2x \][/tex]
5. Evaluate [tex]\(F'(3)\)[/tex]:
- First, evaluate the argument of the function [tex]\(f\)[/tex]:
[tex]\[ x^2 - 1 = 3^2 - 1 = 9 - 1 = 8 \][/tex]
Thus:
[tex]\[ F'(3) = -f(8) \cdot 2 \cdot 3 \][/tex]
- We know from the problem statement that:
[tex]\[ f(8) = -4 \][/tex]
Substituting this value in:
[tex]\[ F'(3) = -(-4) \cdot 2 \cdot 3 = 4 \cdot 2 \cdot 3 = 24 \][/tex]
Therefore, [tex]\( F'(3) = 24 \)[/tex].
1. Express [tex]\(F(x)\)[/tex]:
[tex]\[ F(x) = \int_{x^2 - 1}^{0} f(t) \, dt \][/tex]
2. Apply the Fundamental Theorem of Calculus:
The derivative of an integral with variable limits [tex]\(a(x)\)[/tex] to [tex]\(b(x)\)[/tex] is given by:
[tex]\[ \frac{d}{dx} \left( \int_{a(x)}^{b(x)} f(t) \, dt \right) = f\big(b(x)\big) \cdot b'(x) - f\big(a(x)\big) \cdot a'(x) \][/tex]
Here, [tex]\(a(x) = x^2 - 1\)[/tex] and [tex]\(b(x) = 0\)[/tex].
3. Differentiate the limits:
- The upper limit [tex]\(b(x)\)[/tex] is [tex]\(0\)[/tex], which is a constant. Therefore:
[tex]\[ b'(x) = \frac{d}{dx}(0) = 0 \][/tex]
- The lower limit [tex]\(a(x)\)[/tex] is [tex]\(x^2 - 1\)[/tex]. Therefore:
[tex]\[ a'(x) = \frac{d}{dx}(x^2 - 1) = 2x \][/tex]
4. Substitute into the derivative formula:
Using the formula from the Fundamental Theorem of Calculus:
[tex]\[ F'(x) = f\big(0\big) \cdot 0 - f\big(x^2 - 1\big) \cdot 2x \][/tex]
Since [tex]\(f(0) \cdot 0 = 0\)[/tex], the expression simplifies to:
[tex]\[ F'(x) = -f\big(x^2 - 1\big) \cdot 2x \][/tex]
5. Evaluate [tex]\(F'(3)\)[/tex]:
- First, evaluate the argument of the function [tex]\(f\)[/tex]:
[tex]\[ x^2 - 1 = 3^2 - 1 = 9 - 1 = 8 \][/tex]
Thus:
[tex]\[ F'(3) = -f(8) \cdot 2 \cdot 3 \][/tex]
- We know from the problem statement that:
[tex]\[ f(8) = -4 \][/tex]
Substituting this value in:
[tex]\[ F'(3) = -(-4) \cdot 2 \cdot 3 = 4 \cdot 2 \cdot 3 = 24 \][/tex]
Therefore, [tex]\( F'(3) = 24 \)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.