Get comprehensive solutions to your problems with IDNLearn.com. Ask anything and receive prompt, well-informed answers from our community of experienced experts.
Sagot :
To determine the coordinates of polygon [tex]\(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\)[/tex] after dilation, we'll dilate each vertex of polygon [tex]\(ABCD\)[/tex] by a scale factor of [tex]\( \frac{3}{5} \)[/tex] with the center of dilation at the origin [tex]\((0,0)\)[/tex].
The dilation formula for any point [tex]\((x, y)\)[/tex] with respect to the origin using a scale factor [tex]\(k\)[/tex] is:
[tex]\[ (x', y') = (kx, ky) \][/tex]
Given:
- Original vertices:
- [tex]\(A(-4, 6)\)[/tex]
- [tex]\(B(-2, 2)\)[/tex]
- [tex]\(C(4, -2)\)[/tex]
- [tex]\(D(4, 4)\)[/tex]
- Scale factor: [tex]\( \frac{3}{5} \)[/tex]
Let's apply the dilation to each vertex step-by-step:
1. For vertex [tex]\(A(-4, 6)\)[/tex]:
[tex]\[ \begin{align*} x' &= \frac{3}{5} \cdot (-4) = -\frac{12}{5} = -2.4 \\ y' &= \frac{3}{5} \cdot 6 = \frac{18}{5} = 3.6 \\ A' &= (-2.4, 3.6) \end{align*} \][/tex]
2. For vertex [tex]\(B(-2, 2)\)[/tex]:
[tex]\[ \begin{align*} x' &= \frac{3}{5} \cdot (-2) = -\frac{6}{5} = -1.2 \\ y' &= \frac{3}{5} \cdot 2 = \frac{6}{5} = 1.2 \\ B' &= (-1.2, 1.2) \end{align*} \][/tex]
3. For vertex [tex]\(C(4, -2)\)[/tex]:
[tex]\[ \begin{align*} x' &= \frac{3}{5} \cdot 4 = \frac{12}{5} = 2.4 \\ y' &= \frac{3}{5} \cdot (-2) = -\frac{6}{5} = -1.2 \\ C' &= (2.4, -1.2) \end{align*} \][/tex]
4. For vertex [tex]\(D(4, 4)\)[/tex]:
[tex]\[ \begin{align*} x' &= \frac{3}{5} \cdot 4 = \frac{12}{5} = 2.4 \\ y' &= \frac{3}{5} \cdot 4 = \frac{12}{5} = 2.4 \\ D' &= (2.4, 2.4) \end{align*} \][/tex]
After calculating these, you will find the new coordinates of the vertices for polygon [tex]\( A^{\prime} B^{\prime} C^{\prime} D^{\prime} \)[/tex]:
[tex]\[ A^{\prime} = (-2.4, 3.6), \quad B^{\prime} = (-1.2, 1.2), \quad C^{\prime} = (2.4, -1.2), \quad D^{\prime} = (2.4, 2.4) \][/tex]
Hence, the correct set of vertices for polygon [tex]\( A^{\prime} B^{\prime} C^{\prime} D^{\prime} \)[/tex] is:
[tex]\[ \boxed{A^{\prime}(-2.4, 3.6), B^{\prime}(-1.2, 1.2), C^{\prime}(2.4, -1.2), D^{\prime}(2.4, 2.4)} \][/tex]
The dilation formula for any point [tex]\((x, y)\)[/tex] with respect to the origin using a scale factor [tex]\(k\)[/tex] is:
[tex]\[ (x', y') = (kx, ky) \][/tex]
Given:
- Original vertices:
- [tex]\(A(-4, 6)\)[/tex]
- [tex]\(B(-2, 2)\)[/tex]
- [tex]\(C(4, -2)\)[/tex]
- [tex]\(D(4, 4)\)[/tex]
- Scale factor: [tex]\( \frac{3}{5} \)[/tex]
Let's apply the dilation to each vertex step-by-step:
1. For vertex [tex]\(A(-4, 6)\)[/tex]:
[tex]\[ \begin{align*} x' &= \frac{3}{5} \cdot (-4) = -\frac{12}{5} = -2.4 \\ y' &= \frac{3}{5} \cdot 6 = \frac{18}{5} = 3.6 \\ A' &= (-2.4, 3.6) \end{align*} \][/tex]
2. For vertex [tex]\(B(-2, 2)\)[/tex]:
[tex]\[ \begin{align*} x' &= \frac{3}{5} \cdot (-2) = -\frac{6}{5} = -1.2 \\ y' &= \frac{3}{5} \cdot 2 = \frac{6}{5} = 1.2 \\ B' &= (-1.2, 1.2) \end{align*} \][/tex]
3. For vertex [tex]\(C(4, -2)\)[/tex]:
[tex]\[ \begin{align*} x' &= \frac{3}{5} \cdot 4 = \frac{12}{5} = 2.4 \\ y' &= \frac{3}{5} \cdot (-2) = -\frac{6}{5} = -1.2 \\ C' &= (2.4, -1.2) \end{align*} \][/tex]
4. For vertex [tex]\(D(4, 4)\)[/tex]:
[tex]\[ \begin{align*} x' &= \frac{3}{5} \cdot 4 = \frac{12}{5} = 2.4 \\ y' &= \frac{3}{5} \cdot 4 = \frac{12}{5} = 2.4 \\ D' &= (2.4, 2.4) \end{align*} \][/tex]
After calculating these, you will find the new coordinates of the vertices for polygon [tex]\( A^{\prime} B^{\prime} C^{\prime} D^{\prime} \)[/tex]:
[tex]\[ A^{\prime} = (-2.4, 3.6), \quad B^{\prime} = (-1.2, 1.2), \quad C^{\prime} = (2.4, -1.2), \quad D^{\prime} = (2.4, 2.4) \][/tex]
Hence, the correct set of vertices for polygon [tex]\( A^{\prime} B^{\prime} C^{\prime} D^{\prime} \)[/tex] is:
[tex]\[ \boxed{A^{\prime}(-2.4, 3.6), B^{\prime}(-1.2, 1.2), C^{\prime}(2.4, -1.2), D^{\prime}(2.4, 2.4)} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.