IDNLearn.com is designed to help you find reliable answers quickly and easily. Ask anything and receive prompt, well-informed answers from our community of knowledgeable experts.
Sagot :
Certainly! Let's find the indefinite integral of the function [tex]\( \frac{1}{\sqrt{1 + e^{2x}}} \)[/tex].
To solve the integral:
[tex]\[ \int \frac{1}{\sqrt{1 + e^{2x}}} \, dx \][/tex]
1. Substitute:
Let [tex]\( u = e^{x} \)[/tex], hence [tex]\( du = e^{x} \, dx \)[/tex], or equivalently [tex]\( dx = \frac{du}{u} \)[/tex].
2. Rewrite the integral:
When [tex]\( x \)[/tex] becomes [tex]\( u \)[/tex]:
[tex]\[ 1 + e^{2x} = 1 + u^2 \][/tex]
Thus, the integral becomes:
[tex]\[ \int \frac{1}{\sqrt{1 + u^2}} \cdot \frac{du}{u} \][/tex]
3. Change the variables:
The resulting integral is:
[tex]\[ \int \frac{du}{u \sqrt{1 + u^2}} \][/tex]
4. Simplify and solve the integral:
Let's simplify this integral using a trigonometric substitution.
Use the substitution [tex]\( u = \sinh(t) \)[/tex], which means [tex]\( du = \cosh(t) \, dt \)[/tex] and we also know [tex]\( 1 + \sinh^2(t) = \cosh^2(t) \)[/tex]:
[tex]\[ \int \frac{\cosh(t) \, dt}{\sinh(t) \cosh(t)} = \int \frac{dt}{\sinh(t)} \][/tex]
5. Integrate:
Now, the integral [tex]\(\int \frac{dt}{\sinh(t)} \)[/tex] can be resolved using hyperbolic identities and properties. This integral results in:
[tex]\[ \log(\coth(t) - \csch(t)) \][/tex]
Re-substitute [tex]\( t = \sinh^{-1}(u) \)[/tex]:
[tex]\[ u = \sinh(t) \][/tex]
This eventually leads to the integral in terms of [tex]\( x \)[/tex]:
6. Combine the results:
Taking all these steps and integrations into account, we get the final expression as a logarithmic function:
[tex]\[ \frac{1}{2} \log\left( \sqrt{e^{2x} + 1} - 1 \right) - \frac{1}{2} \log\left( \sqrt{e^{2x} + 1} + 1 \right) \][/tex]
So, the integral [tex]\(\int \frac{1}{\sqrt{1 + e^{2x}}} \, dx\)[/tex] is:
[tex]\[ \frac{1}{2} \log\left( \sqrt{e^{2x} + 1} - 1 \right) - \frac{1}{2} \log\left( \sqrt{e^{2x} + 1} + 1 \right) + C \][/tex]
Where [tex]\( C \)[/tex] is the constant of integration.
To solve the integral:
[tex]\[ \int \frac{1}{\sqrt{1 + e^{2x}}} \, dx \][/tex]
1. Substitute:
Let [tex]\( u = e^{x} \)[/tex], hence [tex]\( du = e^{x} \, dx \)[/tex], or equivalently [tex]\( dx = \frac{du}{u} \)[/tex].
2. Rewrite the integral:
When [tex]\( x \)[/tex] becomes [tex]\( u \)[/tex]:
[tex]\[ 1 + e^{2x} = 1 + u^2 \][/tex]
Thus, the integral becomes:
[tex]\[ \int \frac{1}{\sqrt{1 + u^2}} \cdot \frac{du}{u} \][/tex]
3. Change the variables:
The resulting integral is:
[tex]\[ \int \frac{du}{u \sqrt{1 + u^2}} \][/tex]
4. Simplify and solve the integral:
Let's simplify this integral using a trigonometric substitution.
Use the substitution [tex]\( u = \sinh(t) \)[/tex], which means [tex]\( du = \cosh(t) \, dt \)[/tex] and we also know [tex]\( 1 + \sinh^2(t) = \cosh^2(t) \)[/tex]:
[tex]\[ \int \frac{\cosh(t) \, dt}{\sinh(t) \cosh(t)} = \int \frac{dt}{\sinh(t)} \][/tex]
5. Integrate:
Now, the integral [tex]\(\int \frac{dt}{\sinh(t)} \)[/tex] can be resolved using hyperbolic identities and properties. This integral results in:
[tex]\[ \log(\coth(t) - \csch(t)) \][/tex]
Re-substitute [tex]\( t = \sinh^{-1}(u) \)[/tex]:
[tex]\[ u = \sinh(t) \][/tex]
This eventually leads to the integral in terms of [tex]\( x \)[/tex]:
6. Combine the results:
Taking all these steps and integrations into account, we get the final expression as a logarithmic function:
[tex]\[ \frac{1}{2} \log\left( \sqrt{e^{2x} + 1} - 1 \right) - \frac{1}{2} \log\left( \sqrt{e^{2x} + 1} + 1 \right) \][/tex]
So, the integral [tex]\(\int \frac{1}{\sqrt{1 + e^{2x}}} \, dx\)[/tex] is:
[tex]\[ \frac{1}{2} \log\left( \sqrt{e^{2x} + 1} - 1 \right) - \frac{1}{2} \log\left( \sqrt{e^{2x} + 1} + 1 \right) + C \][/tex]
Where [tex]\( C \)[/tex] is the constant of integration.
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.