IDNLearn.com: Your one-stop platform for getting reliable answers to any question. Our experts are available to provide accurate, comprehensive answers to help you make informed decisions about any topic or issue you encounter.
Sagot :
Sure! Let's analyze the function [tex]\( f(x) = \left(\frac{1}{3}\right)^x \)[/tex] step by step.
### 4.1: Is [tex]\( f \)[/tex] an increasing or decreasing function? Give a reason for your answer.
The function [tex]\( f(x) = \left(\frac{1}{3}\right)^x \)[/tex] is a decreasing function. This is because the base of the exponential function, [tex]\(\frac{1}{3}\)[/tex], is less than 1. In general, for exponential functions of the form [tex]\( a^x \)[/tex] where [tex]\( 0 < a < 1 \)[/tex], the function is decreasing.
### 4.2: Determine [tex]\( f^{-1}(x) \)[/tex] in the form [tex]\( y = \ldots \)[/tex]
To find the inverse function [tex]\( f^{-1}(x) \)[/tex], we start by setting [tex]\( y = f^{-1}(x) \)[/tex]. This means:
[tex]\[ x = \left(\frac{1}{3}\right)^y \][/tex]
We need to solve this equation for [tex]\( y \)[/tex]. Taking the natural logarithm on both sides, we get:
[tex]\[ \ln(x) = \ln\left(\left(\frac{1}{3}\right)^y\right) \][/tex]
[tex]\[ \ln(x) = y \cdot \ln\left(\frac{1}{3}\right) \][/tex]
Solving for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{\ln(x)}{\ln\left(\frac{1}{3}\right)} \][/tex]
Since [tex]\( \ln\left(\frac{1}{3}\right) = -\ln(3) \)[/tex]:
[tex]\[ y = \frac{\ln(x)}{-\ln(3)} \][/tex]
Simplifying further, we get:
[tex]\[ y = -\frac{\ln(x)}{\ln(3)} \][/tex]
Thus, the inverse function is:
[tex]\[ f^{-1}(x) = -\frac{\ln(x)}{\ln(3)} \][/tex]
### 4.3: Write down the equation of the asymptote of [tex]\( f(x) - 5 \)[/tex].
For the function [tex]\( f(x) = \left(\frac{1}{3}\right)^x \)[/tex], the horizontal asymptote is [tex]\( y = 0 \)[/tex] because as [tex]\( x \)[/tex] approaches infinity, [tex]\( \left(\frac{1}{3}\right)^x \)[/tex] approaches 0. When we consider [tex]\( f(x) - 5 \)[/tex], this shifts the entire graph of [tex]\( f(x) \)[/tex] down by 5 units. Therefore, the equation of the asymptote for [tex]\( f(x) - 5 \)[/tex] is:
[tex]\[ y = -5 \][/tex]
### 4.4: Describe the transformation from [tex]\( f \)[/tex] to [tex]\( g \)[/tex] if [tex]\( g(x) = \log_3 x \)[/tex].
The transformation from [tex]\( f(x) = \left(\frac{1}{3}\right)^x \)[/tex] to [tex]\( g(x) = \log_3 x \)[/tex] can be described as a reflection over the y-axis. The function [tex]\( f(x) = \left(\frac{1}{3}\right)^x \)[/tex] is equivalent to [tex]\( 3^{-x} \)[/tex]. Taking the logarithm base 3 of both sides, we obtain:
[tex]\[ \log_3(f(x)) = \log_3(3^{-x}) \][/tex]
[tex]\[ \log_3(f(x)) = -x \][/tex]
Thus, [tex]\( g(x) = -\log_3(f(x)) \)[/tex], making [tex]\( g(x) \)[/tex] the reflection of [tex]\( f(x) \)[/tex] over the y-axis.
In conclusion:
- 4.1 [tex]\( f \)[/tex] is a decreasing function because the base [tex]\(\frac{1}{3}\)[/tex] is less than 1.
- 4.2 [tex]\( f^{-1}(x) = -\frac{\ln(x)}{\ln(3)} \)[/tex]
- 4.3 The equation of the asymptote of [tex]\( f(x)-5 \)[/tex] is [tex]\( y = -5 \)[/tex].
- 4.4 The function [tex]\( g(x) = \log_3 x \)[/tex] is the reflection of [tex]\( f(x) = \left(\frac{1}{3}\right)^x \)[/tex] over the y-axis.
### 4.1: Is [tex]\( f \)[/tex] an increasing or decreasing function? Give a reason for your answer.
The function [tex]\( f(x) = \left(\frac{1}{3}\right)^x \)[/tex] is a decreasing function. This is because the base of the exponential function, [tex]\(\frac{1}{3}\)[/tex], is less than 1. In general, for exponential functions of the form [tex]\( a^x \)[/tex] where [tex]\( 0 < a < 1 \)[/tex], the function is decreasing.
### 4.2: Determine [tex]\( f^{-1}(x) \)[/tex] in the form [tex]\( y = \ldots \)[/tex]
To find the inverse function [tex]\( f^{-1}(x) \)[/tex], we start by setting [tex]\( y = f^{-1}(x) \)[/tex]. This means:
[tex]\[ x = \left(\frac{1}{3}\right)^y \][/tex]
We need to solve this equation for [tex]\( y \)[/tex]. Taking the natural logarithm on both sides, we get:
[tex]\[ \ln(x) = \ln\left(\left(\frac{1}{3}\right)^y\right) \][/tex]
[tex]\[ \ln(x) = y \cdot \ln\left(\frac{1}{3}\right) \][/tex]
Solving for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{\ln(x)}{\ln\left(\frac{1}{3}\right)} \][/tex]
Since [tex]\( \ln\left(\frac{1}{3}\right) = -\ln(3) \)[/tex]:
[tex]\[ y = \frac{\ln(x)}{-\ln(3)} \][/tex]
Simplifying further, we get:
[tex]\[ y = -\frac{\ln(x)}{\ln(3)} \][/tex]
Thus, the inverse function is:
[tex]\[ f^{-1}(x) = -\frac{\ln(x)}{\ln(3)} \][/tex]
### 4.3: Write down the equation of the asymptote of [tex]\( f(x) - 5 \)[/tex].
For the function [tex]\( f(x) = \left(\frac{1}{3}\right)^x \)[/tex], the horizontal asymptote is [tex]\( y = 0 \)[/tex] because as [tex]\( x \)[/tex] approaches infinity, [tex]\( \left(\frac{1}{3}\right)^x \)[/tex] approaches 0. When we consider [tex]\( f(x) - 5 \)[/tex], this shifts the entire graph of [tex]\( f(x) \)[/tex] down by 5 units. Therefore, the equation of the asymptote for [tex]\( f(x) - 5 \)[/tex] is:
[tex]\[ y = -5 \][/tex]
### 4.4: Describe the transformation from [tex]\( f \)[/tex] to [tex]\( g \)[/tex] if [tex]\( g(x) = \log_3 x \)[/tex].
The transformation from [tex]\( f(x) = \left(\frac{1}{3}\right)^x \)[/tex] to [tex]\( g(x) = \log_3 x \)[/tex] can be described as a reflection over the y-axis. The function [tex]\( f(x) = \left(\frac{1}{3}\right)^x \)[/tex] is equivalent to [tex]\( 3^{-x} \)[/tex]. Taking the logarithm base 3 of both sides, we obtain:
[tex]\[ \log_3(f(x)) = \log_3(3^{-x}) \][/tex]
[tex]\[ \log_3(f(x)) = -x \][/tex]
Thus, [tex]\( g(x) = -\log_3(f(x)) \)[/tex], making [tex]\( g(x) \)[/tex] the reflection of [tex]\( f(x) \)[/tex] over the y-axis.
In conclusion:
- 4.1 [tex]\( f \)[/tex] is a decreasing function because the base [tex]\(\frac{1}{3}\)[/tex] is less than 1.
- 4.2 [tex]\( f^{-1}(x) = -\frac{\ln(x)}{\ln(3)} \)[/tex]
- 4.3 The equation of the asymptote of [tex]\( f(x)-5 \)[/tex] is [tex]\( y = -5 \)[/tex].
- 4.4 The function [tex]\( g(x) = \log_3 x \)[/tex] is the reflection of [tex]\( f(x) = \left(\frac{1}{3}\right)^x \)[/tex] over the y-axis.
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. IDNLearn.com is committed to providing accurate answers. Thanks for stopping by, and see you next time for more solutions.