From simple questions to complex issues, IDNLearn.com has the answers you need. Ask your questions and receive prompt, detailed answers from our experienced and knowledgeable community members.

You wish to test the following claim [tex]\(\left(H_a\right)\)[/tex] at a significance level of [tex]\(\alpha=0.001\)[/tex].

[tex]\[
\begin{array}{l}
H_o: \mu = 65.8 \\
H_a: \mu \ \textless \ 65.8
\end{array}
\][/tex]

You believe the population is normally distributed, but you do not know the standard deviation. You obtain a sample of size [tex]\(n = 14\)[/tex] with a mean [tex]\(\bar{x} = 61.9\)[/tex] and a standard deviation of [tex]\(s = 9.2\)[/tex].

a. What is the test statistic for this sample?
[tex]\[
\text{Test statistic} = \boxed{\hspace{2cm}} \quad \text{(Round to 3 decimal places)}
\][/tex]

b. What is the p-value for this sample?
[tex]\[
\text{p-value} = \boxed{\hspace{2cm}} \quad \text{(Use technology. Round to 4 decimal places)}
\][/tex]

c. The p-value is...
[tex]\[
\begin{array}{l}
\boxed{\text{less than (or equal to) } \alpha} \\
\boxed{\text{greater than } \alpha}
\end{array}
\][/tex]

d. This test statistic leads to a decision to...
[tex]\[
\begin{array}{l}
\boxed{\text{reject the null}} \\
\boxed{\text{accept the null}} \\
\boxed{\text{fail to reject the null}}
\end{array}
\][/tex]


Sagot :

Let's proceed step-by-step through the hypothesis testing process.

### Step 1: Define the Hypotheses
Given hypotheses are:
[tex]\[ H_0: \mu = 65.8 \\ H_a: \mu < 65.8 \][/tex]
Here, we're conducting a one-tailed test to see if the sample mean is significantly less than 65.8.

### Step 2: Gather Given Information
- Alpha ([tex]\(\alpha\)[/tex]) = 0.001
- Population mean under the null hypothesis ([tex]\(\mu_0\)[/tex]) = 65.8
- Sample size ([tex]\(n\)[/tex]) = 14
- Sample mean ([tex]\(\bar{x}\)[/tex]) = 61.9
- Sample standard deviation ([tex]\(s\)[/tex]) = 9.2

### Step 3: Calculate the Test Statistic
We use the t-statistic for hypothesis testing when the population standard deviation is unknown:
[tex]\[ t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \][/tex]
Substituting in the given values:
[tex]\[ t = \frac{61.9 - 65.8}{9.2 / \sqrt{14}} = \frac{-3.9}{2.459} \approx -1.586 \][/tex]

Thus, the test statistic is:
[tex]\[ \text{test statistic} = -1.586 \][/tex]

### Step 4: Calculate the P-Value
The p-value in a one-tailed t-test can be found using the cumulative distribution function (CDF) for the t-distribution with [tex]\( n - 1 \)[/tex] degrees of freedom:
[tex]\[ \text{degrees of freedom} = 14 - 1 = 13 \][/tex]
Using the CDF of the t-distribution:
[tex]\[ \text{p-value} \approx 0.0684 \][/tex]

Therefore, the p-value is:
[tex]\[ \text{p-value} = 0.0684 \][/tex]

### Step 5: Compare the P-Value with Alpha
Next, we compare the p-value with the significance level [tex]\(\alpha = 0.001\)[/tex]:
[tex]\[ 0.0684 > 0.001 \][/tex]

So, the p-value is:
[tex]\[ \text{greater than } \alpha \][/tex]

### Step 6: Make the Decision
Based on the comparison of the p-value with [tex]\(\alpha\)[/tex]:
- If the p-value is less than or equal to [tex]\(\alpha\)[/tex], we reject the null hypothesis.
- If the p-value is greater than [tex]\(\alpha\)[/tex], we fail to reject the null hypothesis.

Since [tex]\(0.0684\)[/tex] is greater than [tex]\(0.001\)[/tex], we:
[tex]\[ \text{fail to reject the null} \][/tex]

### Summary
a. The test statistic for this sample is:
[tex]\[ \text{test statistic} = -1.586 \][/tex]

b. The p-value for this sample is:
[tex]\[ \text{p-value} = 0.0684 \][/tex]

c. The p-value is:
[tex]\[ \text{greater than } \alpha \][/tex]

d. This test statistic leads to a decision to:
[tex]\[ \text{fail to reject the null} \][/tex]