IDNLearn.com is your go-to resource for finding answers to any question you have. Find accurate and detailed answers to your questions from our experienced and dedicated community members.
Sagot :
To solve the limit [tex]\(\lim_{x \rightarrow \infty} \frac{(2x + 3)^6 (3x - 5)^4}{(2x + 1)^{10}}\)[/tex], we need to analyze how each part of the expression behaves as [tex]\(x\)[/tex] approaches infinity.
1. Approximate the dominant terms:
- As [tex]\(x\)[/tex] approaches infinity, the linear terms [tex]\(2x\)[/tex], [tex]\(3x\)[/tex], and [tex]\(2x\)[/tex] in the expressions will dominate over the constants 3, -5, and 1, respectively.
- Therefore:
[tex]\[ 2x + 3 \approx 2x \quad \text{(since 3 becomes negligible)} \][/tex]
[tex]\[ 3x - 5 \approx 3x \quad \text{(since -5 becomes negligible)} \][/tex]
[tex]\[ 2x + 1 \approx 2x \quad \text{(since 1 becomes negligible)} \][/tex]
2. Substitute the approximations into the expression:
[tex]\[ \lim_{x \to \infty} \frac{(2x + 3)^6 (3x - 5)^4}{(2x + 1)^{10}} \approx \lim_{x \to \infty} \frac{(2x)^6 (3x)^4}{(2x)^{10}} \][/tex]
3. Simplify the expression:
- Rewrite the expression to separate the constants and the variable terms:
[tex]\[ \frac{(2x)^6 (3x)^4}{(2x)^{10}} = \frac{2^6 x^6 \cdot 3^4 x^4}{2^{10} x^{10}} = \frac{2^6 \cdot 3^4 \cdot x^{6+4}}{2^{10} \cdot x^{10}} \][/tex]
- Combine the exponents of [tex]\(x\)[/tex]:
[tex]\[ = \frac{2^6 \cdot 3^4 \cdot x^{10}}{2^{10} \cdot x^{10}} \][/tex]
- Since [tex]\(x^{10}\)[/tex] appears in both the numerator and the denominator, it cancels out:
[tex]\[ = \frac{2^6 \cdot 3^4}{2^{10}} \][/tex]
4. Simplify the constants:
- Calculate the powers of the constants:
[tex]\[ 2^6 = 64 \quad \text{and} \quad 3^4 = 81 \][/tex]
- So,
[tex]\[ \frac{64 \cdot 81}{2^{10}} \][/tex]
- Since [tex]\(2^{10} = 1024\)[/tex], the expression becomes:
[tex]\[ \frac{64 \cdot 81}{1024} \][/tex]
5. Calculate the final value:
- Compute the product and then divide:
[tex]\[ 64 \cdot 81 = 5184 \][/tex]
[tex]\[ \frac{5184}{1024} = 5.0625 \][/tex]
Therefore, the limit is:
[tex]\[ \boxed{5.0625} \][/tex]
1. Approximate the dominant terms:
- As [tex]\(x\)[/tex] approaches infinity, the linear terms [tex]\(2x\)[/tex], [tex]\(3x\)[/tex], and [tex]\(2x\)[/tex] in the expressions will dominate over the constants 3, -5, and 1, respectively.
- Therefore:
[tex]\[ 2x + 3 \approx 2x \quad \text{(since 3 becomes negligible)} \][/tex]
[tex]\[ 3x - 5 \approx 3x \quad \text{(since -5 becomes negligible)} \][/tex]
[tex]\[ 2x + 1 \approx 2x \quad \text{(since 1 becomes negligible)} \][/tex]
2. Substitute the approximations into the expression:
[tex]\[ \lim_{x \to \infty} \frac{(2x + 3)^6 (3x - 5)^4}{(2x + 1)^{10}} \approx \lim_{x \to \infty} \frac{(2x)^6 (3x)^4}{(2x)^{10}} \][/tex]
3. Simplify the expression:
- Rewrite the expression to separate the constants and the variable terms:
[tex]\[ \frac{(2x)^6 (3x)^4}{(2x)^{10}} = \frac{2^6 x^6 \cdot 3^4 x^4}{2^{10} x^{10}} = \frac{2^6 \cdot 3^4 \cdot x^{6+4}}{2^{10} \cdot x^{10}} \][/tex]
- Combine the exponents of [tex]\(x\)[/tex]:
[tex]\[ = \frac{2^6 \cdot 3^4 \cdot x^{10}}{2^{10} \cdot x^{10}} \][/tex]
- Since [tex]\(x^{10}\)[/tex] appears in both the numerator and the denominator, it cancels out:
[tex]\[ = \frac{2^6 \cdot 3^4}{2^{10}} \][/tex]
4. Simplify the constants:
- Calculate the powers of the constants:
[tex]\[ 2^6 = 64 \quad \text{and} \quad 3^4 = 81 \][/tex]
- So,
[tex]\[ \frac{64 \cdot 81}{2^{10}} \][/tex]
- Since [tex]\(2^{10} = 1024\)[/tex], the expression becomes:
[tex]\[ \frac{64 \cdot 81}{1024} \][/tex]
5. Calculate the final value:
- Compute the product and then divide:
[tex]\[ 64 \cdot 81 = 5184 \][/tex]
[tex]\[ \frac{5184}{1024} = 5.0625 \][/tex]
Therefore, the limit is:
[tex]\[ \boxed{5.0625} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For trustworthy and accurate answers, visit IDNLearn.com. Thanks for stopping by, and see you next time for more solutions.