Get the answers you've been searching for with IDNLearn.com. Discover reliable answers to your questions with our extensive database of expert knowledge.
Sagot :
To solve the limit [tex]\(\lim_{x \rightarrow \infty} \frac{(2x + 3)^6 (3x - 5)^4}{(2x + 1)^{10}}\)[/tex], we need to analyze how each part of the expression behaves as [tex]\(x\)[/tex] approaches infinity.
1. Approximate the dominant terms:
- As [tex]\(x\)[/tex] approaches infinity, the linear terms [tex]\(2x\)[/tex], [tex]\(3x\)[/tex], and [tex]\(2x\)[/tex] in the expressions will dominate over the constants 3, -5, and 1, respectively.
- Therefore:
[tex]\[ 2x + 3 \approx 2x \quad \text{(since 3 becomes negligible)} \][/tex]
[tex]\[ 3x - 5 \approx 3x \quad \text{(since -5 becomes negligible)} \][/tex]
[tex]\[ 2x + 1 \approx 2x \quad \text{(since 1 becomes negligible)} \][/tex]
2. Substitute the approximations into the expression:
[tex]\[ \lim_{x \to \infty} \frac{(2x + 3)^6 (3x - 5)^4}{(2x + 1)^{10}} \approx \lim_{x \to \infty} \frac{(2x)^6 (3x)^4}{(2x)^{10}} \][/tex]
3. Simplify the expression:
- Rewrite the expression to separate the constants and the variable terms:
[tex]\[ \frac{(2x)^6 (3x)^4}{(2x)^{10}} = \frac{2^6 x^6 \cdot 3^4 x^4}{2^{10} x^{10}} = \frac{2^6 \cdot 3^4 \cdot x^{6+4}}{2^{10} \cdot x^{10}} \][/tex]
- Combine the exponents of [tex]\(x\)[/tex]:
[tex]\[ = \frac{2^6 \cdot 3^4 \cdot x^{10}}{2^{10} \cdot x^{10}} \][/tex]
- Since [tex]\(x^{10}\)[/tex] appears in both the numerator and the denominator, it cancels out:
[tex]\[ = \frac{2^6 \cdot 3^4}{2^{10}} \][/tex]
4. Simplify the constants:
- Calculate the powers of the constants:
[tex]\[ 2^6 = 64 \quad \text{and} \quad 3^4 = 81 \][/tex]
- So,
[tex]\[ \frac{64 \cdot 81}{2^{10}} \][/tex]
- Since [tex]\(2^{10} = 1024\)[/tex], the expression becomes:
[tex]\[ \frac{64 \cdot 81}{1024} \][/tex]
5. Calculate the final value:
- Compute the product and then divide:
[tex]\[ 64 \cdot 81 = 5184 \][/tex]
[tex]\[ \frac{5184}{1024} = 5.0625 \][/tex]
Therefore, the limit is:
[tex]\[ \boxed{5.0625} \][/tex]
1. Approximate the dominant terms:
- As [tex]\(x\)[/tex] approaches infinity, the linear terms [tex]\(2x\)[/tex], [tex]\(3x\)[/tex], and [tex]\(2x\)[/tex] in the expressions will dominate over the constants 3, -5, and 1, respectively.
- Therefore:
[tex]\[ 2x + 3 \approx 2x \quad \text{(since 3 becomes negligible)} \][/tex]
[tex]\[ 3x - 5 \approx 3x \quad \text{(since -5 becomes negligible)} \][/tex]
[tex]\[ 2x + 1 \approx 2x \quad \text{(since 1 becomes negligible)} \][/tex]
2. Substitute the approximations into the expression:
[tex]\[ \lim_{x \to \infty} \frac{(2x + 3)^6 (3x - 5)^4}{(2x + 1)^{10}} \approx \lim_{x \to \infty} \frac{(2x)^6 (3x)^4}{(2x)^{10}} \][/tex]
3. Simplify the expression:
- Rewrite the expression to separate the constants and the variable terms:
[tex]\[ \frac{(2x)^6 (3x)^4}{(2x)^{10}} = \frac{2^6 x^6 \cdot 3^4 x^4}{2^{10} x^{10}} = \frac{2^6 \cdot 3^4 \cdot x^{6+4}}{2^{10} \cdot x^{10}} \][/tex]
- Combine the exponents of [tex]\(x\)[/tex]:
[tex]\[ = \frac{2^6 \cdot 3^4 \cdot x^{10}}{2^{10} \cdot x^{10}} \][/tex]
- Since [tex]\(x^{10}\)[/tex] appears in both the numerator and the denominator, it cancels out:
[tex]\[ = \frac{2^6 \cdot 3^4}{2^{10}} \][/tex]
4. Simplify the constants:
- Calculate the powers of the constants:
[tex]\[ 2^6 = 64 \quad \text{and} \quad 3^4 = 81 \][/tex]
- So,
[tex]\[ \frac{64 \cdot 81}{2^{10}} \][/tex]
- Since [tex]\(2^{10} = 1024\)[/tex], the expression becomes:
[tex]\[ \frac{64 \cdot 81}{1024} \][/tex]
5. Calculate the final value:
- Compute the product and then divide:
[tex]\[ 64 \cdot 81 = 5184 \][/tex]
[tex]\[ \frac{5184}{1024} = 5.0625 \][/tex]
Therefore, the limit is:
[tex]\[ \boxed{5.0625} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.