Join the growing community of curious minds on IDNLearn.com. Whether it's a simple query or a complex problem, our community has the answers you need.
Sagot :
Given the equation:
[tex]\[ \frac{1}{2} x^3 + x - 7 = -3 \sqrt{x - 1} \][/tex]
We want to approximate the solution using three iterations of successive approximations. Let's treat the right-hand side as a new function [tex]\( f(x) \)[/tex], such that:
[tex]\[ f(x) = \frac{1}{2} x^3 + x - 7 + 3 \sqrt{x - 1} \][/tex]
We seek the fixed point where [tex]\( x = f(x) \)[/tex]. Let's start with an initial guess. Observing the graph, let's assume a reasonable initial guess [tex]\(x_0 = 1.5\)[/tex].
### Iteration 1
Plugging [tex]\( x_0 = 1.5 \)[/tex] into [tex]\( f(x) \)[/tex]:
[tex]\[ f(1.5) = \frac{1}{2} (1.5)^3 + 1.5 - 7 + 3 \sqrt{1.5 - 1} \][/tex]
[tex]\[ = \frac{1}{2} (3.375) + 1.5 - 7 + 3 \sqrt{0.5} \][/tex]
[tex]\[ = 1.6875 + 1.5 - 7 + 3 \cdot 0.7071 \][/tex]
[tex]\[ = 1.6875 + 1.5 - 7 + 2.1213 \][/tex]
[tex]\[ = -1.6912 \][/tex]
Updating [tex]\( x_1 \approx -1.6912 \)[/tex], but this result is not feasible because [tex]\( x \)[/tex] needs to be greater than or equal to 1 (since we have [tex]\(\sqrt{x-1}\)[/tex]).
We must re-evaluate with a valid initial guess. Let's try [tex]\( x_0 = 2 \)[/tex].
### Iteration 2
Re-calculating with [tex]\( x_0 = 2 \)[/tex]:
[tex]\[ f(2) = \frac{1}{2} (2)^3 + 2 - 7 + 3 \sqrt{2 - 1} \][/tex]
[tex]\[ = \frac{1}{2} (8) + 2 - 7 + 3 \sqrt{1} \][/tex]
[tex]\[ = 4 + 2 - 7 + 3 \][/tex]
[tex]\[ = 2 \][/tex]
Updating [tex]\( x_1 = 2 \)[/tex].
### Iteration 3
Continuing with [tex]\( x_1 = 2 \)[/tex]:
[tex]\[ f(2) = \frac{1}{2} (2)^3 + 2 - 7 + 3 \sqrt{2 - 1} \][/tex]
[tex]\[ = 4 + 2 - 7 + 3 \][/tex]
[tex]\[ = 2 \][/tex]
We see that the iteration has stabilized at [tex]\( x = 2 \)[/tex].
For validation, let's compare this with the given options:
[tex]\[ \frac{25}{16} \approx 1.5625 \][/tex]
[tex]\[ \frac{27}{16} \approx 1.6875 \][/tex]
[tex]\[ \frac{13}{8} \approx 1.625 \][/tex]
[tex]\[ \frac{15}{8} \approx 1.875 \][/tex]
None of the given options exactly matches [tex]\( x = 2 \)[/tex]. However, since we've noticed a stabilization around [tex]\( x = 2 \)[/tex], the closest match from among the options provided is:
[tex]\[ x \approx \frac{15}{8} \approx 1.875 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\frac{15}{8}} \][/tex]
[tex]\[ \frac{1}{2} x^3 + x - 7 = -3 \sqrt{x - 1} \][/tex]
We want to approximate the solution using three iterations of successive approximations. Let's treat the right-hand side as a new function [tex]\( f(x) \)[/tex], such that:
[tex]\[ f(x) = \frac{1}{2} x^3 + x - 7 + 3 \sqrt{x - 1} \][/tex]
We seek the fixed point where [tex]\( x = f(x) \)[/tex]. Let's start with an initial guess. Observing the graph, let's assume a reasonable initial guess [tex]\(x_0 = 1.5\)[/tex].
### Iteration 1
Plugging [tex]\( x_0 = 1.5 \)[/tex] into [tex]\( f(x) \)[/tex]:
[tex]\[ f(1.5) = \frac{1}{2} (1.5)^3 + 1.5 - 7 + 3 \sqrt{1.5 - 1} \][/tex]
[tex]\[ = \frac{1}{2} (3.375) + 1.5 - 7 + 3 \sqrt{0.5} \][/tex]
[tex]\[ = 1.6875 + 1.5 - 7 + 3 \cdot 0.7071 \][/tex]
[tex]\[ = 1.6875 + 1.5 - 7 + 2.1213 \][/tex]
[tex]\[ = -1.6912 \][/tex]
Updating [tex]\( x_1 \approx -1.6912 \)[/tex], but this result is not feasible because [tex]\( x \)[/tex] needs to be greater than or equal to 1 (since we have [tex]\(\sqrt{x-1}\)[/tex]).
We must re-evaluate with a valid initial guess. Let's try [tex]\( x_0 = 2 \)[/tex].
### Iteration 2
Re-calculating with [tex]\( x_0 = 2 \)[/tex]:
[tex]\[ f(2) = \frac{1}{2} (2)^3 + 2 - 7 + 3 \sqrt{2 - 1} \][/tex]
[tex]\[ = \frac{1}{2} (8) + 2 - 7 + 3 \sqrt{1} \][/tex]
[tex]\[ = 4 + 2 - 7 + 3 \][/tex]
[tex]\[ = 2 \][/tex]
Updating [tex]\( x_1 = 2 \)[/tex].
### Iteration 3
Continuing with [tex]\( x_1 = 2 \)[/tex]:
[tex]\[ f(2) = \frac{1}{2} (2)^3 + 2 - 7 + 3 \sqrt{2 - 1} \][/tex]
[tex]\[ = 4 + 2 - 7 + 3 \][/tex]
[tex]\[ = 2 \][/tex]
We see that the iteration has stabilized at [tex]\( x = 2 \)[/tex].
For validation, let's compare this with the given options:
[tex]\[ \frac{25}{16} \approx 1.5625 \][/tex]
[tex]\[ \frac{27}{16} \approx 1.6875 \][/tex]
[tex]\[ \frac{13}{8} \approx 1.625 \][/tex]
[tex]\[ \frac{15}{8} \approx 1.875 \][/tex]
None of the given options exactly matches [tex]\( x = 2 \)[/tex]. However, since we've noticed a stabilization around [tex]\( x = 2 \)[/tex], the closest match from among the options provided is:
[tex]\[ x \approx \frac{15}{8} \approx 1.875 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\frac{15}{8}} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.