IDNLearn.com makes it easy to find answers and share knowledge with others. Our platform provides prompt, accurate answers from experts ready to assist you with any question you may have.
Sagot :
To determine the gravitational force between Mars and Phobos, we can use Newton's law of universal gravitation. The formula is given by:
[tex]\[ F = G \frac{m_1 \times m_2}{r^2} \][/tex]
Where:
- [tex]\( F \)[/tex] is the gravitational force.
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex].
- [tex]\( m_1 \)[/tex] is the mass of Mars, [tex]\( 6.42 \times 10^{23} \, \text{kg} \)[/tex].
- [tex]\( m_2 \)[/tex] is the mass of Phobos, [tex]\( 1.06 \times 10^{16} \, \text{kg} \)[/tex].
- [tex]\( r \)[/tex] is the distance between Mars and Phobos, [tex]\( 9378 \, \text{km} \)[/tex] which needs to be converted to meters by multiplying by 1000 to get [tex]\( 9378000 \, \text{m} \)[/tex].
Now we plug the values into the formula:
[tex]\[ F = 6.67430 \times 10^{-11} \frac{(6.42 \times 10^{23}) (1.06 \times 10^{16})}{(9378000)^2} \][/tex]
First, calculate the product of the masses:
[tex]\[ m_1 \times m_2 = 6.42 \times 10^{23} \times 1.06 \times 10^{16} = 6.8052 \times 10^{39} \, \text{kg}^2 \][/tex]
Then, calculate the square of the distance:
[tex]\[ r^2 = (9378000)^2 = 8.7936484 \times 10^{13} \, \text{m}^2 \][/tex]
Now, substitute these values back in to find [tex]\( F \)[/tex]:
[tex]\[ F = 6.67430 \times 10^{-11} \frac{6.8052 \times 10^{39}}{8.7936484 \times 10^{13}} \][/tex]
Next, divide [tex]\( 6.8052 \times 10^{39} \, \text{kg}^2 \)[/tex] by [tex]\( 8.7936484 \times 10^{13} \, \text{m}^2 \)[/tex]:
[tex]\[ \frac{6.8052 \times 10^{39}}{8.7936484 \times 10^{13}} \approx 7.73844 \times 10^{25} \][/tex]
Then multiply by [tex]\( G \)[/tex]:
[tex]\[ F = 6.67430 \times 10^{-11} \times 7.73844 \times 10^{25} = 5.16 \times 10^{15} \, N \][/tex]
Hence, the gravitational force between Mars and Phobos is:
[tex]\[ 5.16 \times 10^{15} \, N \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{5.16 \times 10^{15} \, N} \][/tex]
[tex]\[ F = G \frac{m_1 \times m_2}{r^2} \][/tex]
Where:
- [tex]\( F \)[/tex] is the gravitational force.
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex].
- [tex]\( m_1 \)[/tex] is the mass of Mars, [tex]\( 6.42 \times 10^{23} \, \text{kg} \)[/tex].
- [tex]\( m_2 \)[/tex] is the mass of Phobos, [tex]\( 1.06 \times 10^{16} \, \text{kg} \)[/tex].
- [tex]\( r \)[/tex] is the distance between Mars and Phobos, [tex]\( 9378 \, \text{km} \)[/tex] which needs to be converted to meters by multiplying by 1000 to get [tex]\( 9378000 \, \text{m} \)[/tex].
Now we plug the values into the formula:
[tex]\[ F = 6.67430 \times 10^{-11} \frac{(6.42 \times 10^{23}) (1.06 \times 10^{16})}{(9378000)^2} \][/tex]
First, calculate the product of the masses:
[tex]\[ m_1 \times m_2 = 6.42 \times 10^{23} \times 1.06 \times 10^{16} = 6.8052 \times 10^{39} \, \text{kg}^2 \][/tex]
Then, calculate the square of the distance:
[tex]\[ r^2 = (9378000)^2 = 8.7936484 \times 10^{13} \, \text{m}^2 \][/tex]
Now, substitute these values back in to find [tex]\( F \)[/tex]:
[tex]\[ F = 6.67430 \times 10^{-11} \frac{6.8052 \times 10^{39}}{8.7936484 \times 10^{13}} \][/tex]
Next, divide [tex]\( 6.8052 \times 10^{39} \, \text{kg}^2 \)[/tex] by [tex]\( 8.7936484 \times 10^{13} \, \text{m}^2 \)[/tex]:
[tex]\[ \frac{6.8052 \times 10^{39}}{8.7936484 \times 10^{13}} \approx 7.73844 \times 10^{25} \][/tex]
Then multiply by [tex]\( G \)[/tex]:
[tex]\[ F = 6.67430 \times 10^{-11} \times 7.73844 \times 10^{25} = 5.16 \times 10^{15} \, N \][/tex]
Hence, the gravitational force between Mars and Phobos is:
[tex]\[ 5.16 \times 10^{15} \, N \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{5.16 \times 10^{15} \, N} \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com provides the best answers to your questions. Thank you for visiting, and come back soon for more helpful information.