IDNLearn.com provides a user-friendly platform for finding answers to your questions. Discover in-depth and reliable answers to all your questions from our knowledgeable community members who are always ready to assist.
Sagot :
To solve this problem, let's start by breaking it down into two parts: calculating the mean free path of thermal neutrons in cadmium and then estimating the thickness of cadmium needed to remove 99% of the neutrons from a beam.
### Part 1: Calculating the Mean Free Path
1. Given Data:
- Density of cadmium, [tex]\( \rho = 8.6 \times 10^3 \ \text{kg/m}^3 \)[/tex]
- Neutron cross-section, [tex]\( \sigma = 2.4 \times 10^4 \ \text{barns} \)[/tex] (Note: 1 barn = [tex]\( 10^{-28} \ \text{m}^2 \)[/tex])
- Avogadro's number, [tex]\( N_A = 6.022 \times 10^{23} \ \text{atoms/mol} \)[/tex]
- Molar mass of cadmium, [tex]\( M = 112.41 \ \text{g/mol} \)[/tex]
2. Convert the cross-section to square meters:
[tex]\[ \sigma = 2.4 \times 10^4 \ \text{barns} = 2.4 \times 10^4 \times 10^{-28} \ \text{m}^2 = 2.4 \times 10^{-24} \ \text{m}^2 \][/tex]
3. Convert the molar mass to kilograms per mole:
[tex]\[ M_{\text{kg/mol}} = 112.41 \ \text{g/mol} \times 10^{-3} \ \text{kg/g} = 0.11241 \ \text{kg/mol} \][/tex]
4. Calculate the number density of cadmium atoms ([tex]\(N\)[/tex]):
[tex]\[ N = \left( \frac{\rho}{M_{\text{kg/mol}}} \right) N_A = \left( \frac{8.6 \times 10^3 \ \text{kg/m}^3}{0.11241 \ \text{kg/mol}} \right) (6.022 \times 10^{23} \ \text{atoms/mol}) \][/tex]
[tex]\[ N \approx 4.612 \times 10^{28} \ \text{atoms/m}^3 \][/tex]
5. Calculate the mean free path ([tex]\(\lambda\)[/tex]):
[tex]\[ \lambda = \frac{1}{N \sigma} = \frac{1}{(4.612 \times 10^{28} \ \text{atoms/m}^3)(2.4 \times 10^{-24} \ \text{m}^2)} \][/tex]
[tex]\[ \lambda \approx 9.043 \times 10^{-6} \ \text{m} \][/tex]
### Part 2: Estimating the Thickness to Remove 99% of Neutrons
The attenuation of neutrons in a material can be described by the exponential attenuation law:
[tex]\[ I(x) = I_0 e^{-x / \lambda} \][/tex]
where [tex]\(I(x)\)[/tex] is the intensity of neutrons after traveling through the material, [tex]\(I_0\)[/tex] is the initial intensity, [tex]\(x\)[/tex] is the thickness, and [tex]\(\lambda\)[/tex] is the mean free path.
To remove 99% of the neutrons:
[tex]\[ \frac{I(x)}{I_0} = 1 - 0.99 = 0.01 \][/tex]
Taking the natural logarithm on both sides, we get:
[tex]\[ \ln\left(\frac{I(x)}{I_0}\right) = \ln(0.01) \][/tex]
[tex]\[ -\frac{x}{\lambda} = \ln(0.01) \][/tex]
[tex]\[ x = -\lambda \ln(0.01) \][/tex]
Since [tex]\(\ln(0.01) = -4.605\)[/tex]:
[tex]\[ x = \lambda \times 4.605 \][/tex]
Substituting the value of [tex]\(\lambda\)[/tex]:
[tex]\[ x = 9.043 \times 10^{-6} \ \text{m} \times 4.605 \][/tex]
[tex]\[ x \approx 4.165 \times 10^{-5} \ \text{m} \][/tex]
### Final Answer:
- The mean free path of thermal neutrons in cadmium is approximately [tex]\(9.044 \times 10^{-6} \ \text{m}\)[/tex].
- The thickness of cadmium required to remove 99% of the neutrons from the beam is approximately [tex]\(4.165 \times 10^{-5} \ \text{m}\)[/tex] or 41.65 micrometers.
### Part 1: Calculating the Mean Free Path
1. Given Data:
- Density of cadmium, [tex]\( \rho = 8.6 \times 10^3 \ \text{kg/m}^3 \)[/tex]
- Neutron cross-section, [tex]\( \sigma = 2.4 \times 10^4 \ \text{barns} \)[/tex] (Note: 1 barn = [tex]\( 10^{-28} \ \text{m}^2 \)[/tex])
- Avogadro's number, [tex]\( N_A = 6.022 \times 10^{23} \ \text{atoms/mol} \)[/tex]
- Molar mass of cadmium, [tex]\( M = 112.41 \ \text{g/mol} \)[/tex]
2. Convert the cross-section to square meters:
[tex]\[ \sigma = 2.4 \times 10^4 \ \text{barns} = 2.4 \times 10^4 \times 10^{-28} \ \text{m}^2 = 2.4 \times 10^{-24} \ \text{m}^2 \][/tex]
3. Convert the molar mass to kilograms per mole:
[tex]\[ M_{\text{kg/mol}} = 112.41 \ \text{g/mol} \times 10^{-3} \ \text{kg/g} = 0.11241 \ \text{kg/mol} \][/tex]
4. Calculate the number density of cadmium atoms ([tex]\(N\)[/tex]):
[tex]\[ N = \left( \frac{\rho}{M_{\text{kg/mol}}} \right) N_A = \left( \frac{8.6 \times 10^3 \ \text{kg/m}^3}{0.11241 \ \text{kg/mol}} \right) (6.022 \times 10^{23} \ \text{atoms/mol}) \][/tex]
[tex]\[ N \approx 4.612 \times 10^{28} \ \text{atoms/m}^3 \][/tex]
5. Calculate the mean free path ([tex]\(\lambda\)[/tex]):
[tex]\[ \lambda = \frac{1}{N \sigma} = \frac{1}{(4.612 \times 10^{28} \ \text{atoms/m}^3)(2.4 \times 10^{-24} \ \text{m}^2)} \][/tex]
[tex]\[ \lambda \approx 9.043 \times 10^{-6} \ \text{m} \][/tex]
### Part 2: Estimating the Thickness to Remove 99% of Neutrons
The attenuation of neutrons in a material can be described by the exponential attenuation law:
[tex]\[ I(x) = I_0 e^{-x / \lambda} \][/tex]
where [tex]\(I(x)\)[/tex] is the intensity of neutrons after traveling through the material, [tex]\(I_0\)[/tex] is the initial intensity, [tex]\(x\)[/tex] is the thickness, and [tex]\(\lambda\)[/tex] is the mean free path.
To remove 99% of the neutrons:
[tex]\[ \frac{I(x)}{I_0} = 1 - 0.99 = 0.01 \][/tex]
Taking the natural logarithm on both sides, we get:
[tex]\[ \ln\left(\frac{I(x)}{I_0}\right) = \ln(0.01) \][/tex]
[tex]\[ -\frac{x}{\lambda} = \ln(0.01) \][/tex]
[tex]\[ x = -\lambda \ln(0.01) \][/tex]
Since [tex]\(\ln(0.01) = -4.605\)[/tex]:
[tex]\[ x = \lambda \times 4.605 \][/tex]
Substituting the value of [tex]\(\lambda\)[/tex]:
[tex]\[ x = 9.043 \times 10^{-6} \ \text{m} \times 4.605 \][/tex]
[tex]\[ x \approx 4.165 \times 10^{-5} \ \text{m} \][/tex]
### Final Answer:
- The mean free path of thermal neutrons in cadmium is approximately [tex]\(9.044 \times 10^{-6} \ \text{m}\)[/tex].
- The thickness of cadmium required to remove 99% of the neutrons from the beam is approximately [tex]\(4.165 \times 10^{-5} \ \text{m}\)[/tex] or 41.65 micrometers.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.